OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 20 — Oct. 2, 2006
  • pp: 9284–9292

Single-longitudinal-mode Nd-laser with a Bragg-grating Fabry-Perot cavity

Björn Jacobsson, Valdas Pasiskevicius, and Fredrik Laurell  »View Author Affiliations

Optics Express, Vol. 14, Issue 20, pp. 9284-9292 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (119 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate 0.85 W of power in a single longitudinal mode at 1066 nm from a Nd:GdVO4 laser. The laser consists of only two components, the gain medium and a volume Bragg grating in glass, in a simple linear cavity comprising a combination of a Fabry-Perot cavity and a narrowband filter. Thanks to the narrowband Bragg grating, the single longitudinal mode is maintained for a cavity length up to 8 mm, while a continuous tuning of 25 GHz is achieved for a shorter cavity and lower power.

© 2006 Optical Society of America

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.3570) Lasers and laser optics : Lasers, single-mode

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 21, 2006
Revised Manuscript: September 12, 2006
Manuscript Accepted: September 17, 2006
Published: October 2, 2006

Björn Jacobsson, Valdas Pasiskevicius, and Fredrik Laurell, "Single-longitudinal-mode Nd-laser with a Bragg-grating Fabry-Perot cavity," Opt. Express 14, 9284-9292 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. G. Danielmeyer, "Stabilized efficient single-frequency Nd:YAG laser," IEEE J. Quantum Electron. 6, 101-104 (1970). [CrossRef]
  2. H. G. Danielmeyer and E. H. Turner, "Electro-optic elimination of spatial hole burning in lasers," Appl. Phys. Lett. 17, 519-521 (1970). [CrossRef]
  3. K. Nakagawa, Y. Shimizu, and M. Ohtsu, "High power diode-laser-pumped twisted-mode Nd:YAG laser," IEEE Photon. Technol. Lett. 6, 499-501 (1994). [CrossRef]
  4. K. Wallmeroth and P. Peuser, "High power, cw single-frequency, TEM00, diode-laser-pumped Nd:YAG laser," Electron. Lett. 24, 1086-1088 (1988). [CrossRef]
  5. Y. J. Cheng, C. G. Fanning, and A. E. Siegman, "Experimental observation of a large excess quantum noise factor in the linewidth of a laser oscillator having nonorthogonal modes," Phys. Rev. Lett. 77, 627-630 (1996). [CrossRef] [PubMed]
  6. T. J. Kane and R. L. Byer, "Monolithic, unidirectional single-mode Nd:YAG ring laser," Opt. Lett. 10, 65-67 (1985). [CrossRef] [PubMed]
  7. H. A. Haus and S. Kawakami, "On the ‘excess spontaneous emission factor’ in gain-guided laser amplifiers," IEEE J. Quantum Electron. 21, 63-69 (1985). [CrossRef]
  8. A. E. Siegman, "Excess spontaneous emission in non-Hermitian optical systems. II. Laser oscillators," Phys. Rev. A 39, 1264-1268 (1989). [CrossRef] [PubMed]
  9. J. J. Zayhowski, "Limits imposed by spatial hole burning on the single-mode operation of standing-wave laser cavities," Opt. Lett. 15, 431-433 (1990). [CrossRef] [PubMed]
  10. O. Efimov, L. Glebov, L. Glebova, K. Richardson, and V. Smirnov, "High-efficiency Bragg gratings in photothermorefractive glass," Appl. Opt. 38, 619-627 (1999). [CrossRef]
  11. B. Volodin, S. Dolgy, E. Melnik, E. Downs, J. Shaw, and V. Ban, "Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings," Opt. Lett. 29, 1891-1893 (2004). [CrossRef] [PubMed]
  12. B. Jacobsson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, "Narrowband bulk Bragg grating optical parametric oscillator," Opt. Lett. 30, 2281-2283 (2005). [CrossRef] [PubMed]
  13. B. Jacobsson, V. Pasiskevicius, and F. Laurell, "Tunable single-longitudinal-mode ErYb:glass laser locked by a bulk glass Bragg grating," Opt. Lett. 31, 1663-1665 (2006). [CrossRef] [PubMed]
  14. T. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M. Bass, "Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror," Opt. Lett. 31, 229-231 (2006). [CrossRef] [PubMed]
  15. H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech J. 48, 2909-2947 (1969).
  16. Y. Barmenkov, D. Zalvidea, S. Torres-Peir´o, J. L. Cruz, and M. And´es, "Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings," Opt. Express 14, 6394-6399 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited