OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 20 — Oct. 2, 2006
  • pp: 9350–9357

Fast determination of saturation intensity and maximum emission rate by single-emitter imaging

J. Y. P. Butter and B. Hecht  »View Author Affiliations

Optics Express, Vol. 14, Issue 20, pp. 9350-9357 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (200 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the dependence of the spot size in single-emitter confocal imaging on the degree of saturation. We show that single-emitter spots are broadened and flattened significantly already at excitation intensities well below saturation. The resulting single-emitter spot shapes thus deviate significantly from the excitation point spread function. We show and support by Monte Carlo simulations that fitting of a single spot is sufficient to extract the saturation intensity and the maximum emission rate of a single emitter with high accuracy. Our results will be of interest in all areas of single-emitter studies.

© 2006 Optical Society of America

OCIS Codes
(180.1790) Microscopy : Confocal microscopy
(260.2510) Physical optics : Fluorescence
(270.0270) Quantum optics : Quantum optics
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:

Original Manuscript: July 25, 2006
Revised Manuscript: September 11, 2006
Manuscript Accepted: September 11, 2006
Published: October 2, 2006

Virtual Issues
Vol. 1, Iss. 11 Virtual Journal for Biomedical Optics

J. Y. P. Butter and B. Hecht, "Fast determination of saturation intensity and maximum emission rate by single-emitter imaging," Opt. Express 14, 9350-9357 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Basché, W. E. Moerner, M. Orrit, and U. P. Wild, eds., Single-Molecule Optical Detection, Imaging and Spectroscopy (VCH Verlagsgesellschaft, Weinheim, 1997).
  2. W. P. Ambrose, T. Basché, and W. E. Moerner, "Detection and spectroscopy of single pentacene molecules in a p-terphenyl crystal by means of fluorescence excitation," J. Chem. Phys. 95, 7150-7163 (1991). [CrossRef]
  3. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  4. N. Bobroff, "Position Measurement with a Resolution and Noise-Limited Instrument," Rev. Sci. Instrum. 57, 1152-1157 (1986). [CrossRef]
  5. T. Schmidt, G. J. Schütz,W. Baumgartner, H. J. Gruber, and H. Schindler, "Imaging of single molecule diffusion," Proc. Natl. Acad. Sci. USA 93, 2926-2929 (1996). [CrossRef] [PubMed]
  6. A. Bloeß, Y. Durand, M. Matsushita, H. van der Meer, G. J. Brakenhoff, and J. Schmidt, "Optical far-field microscopy of single molecules with 3.4 nm lateral resolution," J. Microsc. 205, 76-85 (2002). [CrossRef] [PubMed]
  7. A. M. van Oijen, J. K¨ohler, J. Schmidt, M. Müller, and G. J. Brakenhoff, "3-Dimensional super-resolution by spectrally selective imaging," Chem. Phys. Lett. 292, 183-187 (1998). [CrossRef]
  8. A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, "Myosin V Walks Hand-Over- Hand: Single Fluorophore Imaging with 1.5-nm Localization," Science 300, 2061-2065 (2003). [CrossRef] [PubMed]
  9. J.-M. Segura, A. Renn, and B. Hecht, "A sample-scanning confocal optical microscope for cryogenic operation," Rev. Sci. Instrum. 71, 1706-1711 (2000). [CrossRef]
  10. S. Kummer, F. Kulzer, R. Kettner, T. Basché, C. Tietz, C. Glowatz, and C. Kryschi, "Absorption, excitation and emission spectroscopy of terrylene in p-terphenyl: Bulk measurements and single molecule studies," J. Chem. Phys. 107, 7673-7684 (1997). [CrossRef]
  11. S. Kummer, T. Basché, and C. Bräuchle, "Terrylene in p-terphenyl: a novel single crystalline system for single molecule spectroscopy at low temperatures," Chem. Phys. Lett. 229, 309-316 (1994). [CrossRef]
  12. P. Bordat and R. Brown, "Molecular mechanisms of photo-induced spectral diffusion of single terrylene molecules in p-terphenyl," J. Chem. Phys. 116, 229-236 (2002). [CrossRef]
  13. J. Y. P. Butter and B. Hecht, "Aperture scanning near-field optical microscopy and spectroscopy of single terrylene molecules at 1.8 K," Nanotechnology 17, 1547-1550 (2006). [CrossRef]
  14. T. Plakhotnik, W. E. Moerner, V. Palm, and U. P. Wild, "Single molecule spectroscopy: maximum emission rate and saturation intensity," Opt. Commun. 114, 83-88 (1995). [CrossRef]
  15. J. Bernard, L. Fleury, H. Talon, and M. Orrit, "Photon bunching in the fluorescence from single molecules: A probe for intersystem crossing," J. Chem. Phys. 98, 850-859 (1993). [CrossRef]
  16. H. de Vries and D. A. Wiersma, "Photophysical and photochemical molecular hole burning theory," J. Chem. Phys. 72, 1851-1863 (1980). [CrossRef]
  17. P. Brémaud, An introdcution to probablistic modeling (Springer-Verlag, 1994).
  18. P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical sciences, 2nd ed. (WCB/McGraw-Hill, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited