OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 20 — Oct. 2, 2006
  • pp: 9358–9370

Adiabatic compression of quadratic temporal solitons in aperiodic quasi-phase-matching gratings

Xianglong Zeng, Satoshi Ashihara, Nobuhide Fujioka, Tsutomu Shimura, and Kazuo Kuroda  »View Author Affiliations


Optics Express, Vol. 14, Issue 20, pp. 9358-9370 (2006)
http://dx.doi.org/10.1364/OE.14.009358


View Full Text Article

Enhanced HTML    Acrobat PDF (572 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We numerically show that it is possible to achieve adiabatic compression of femtosecond quadratic solitons in aperiodically poled lithium niobate device. Two-colored solitons of the fundamental wavelength of 1560 nm can be adiabatically shaped by using group-velocity matching schemes available in quasi-phase-matching (QPM) devices. We investigate the performance of the adiabatic compression based on two different group-velocity matching schemes: type-I (e: o + o) collinear QPM geometry and type-0 (e: e + e) non-collinear QPM geometry. Two-colored temporal solitons with pulse duration of 35 fs are generated without visible pedestals from 100-fs fundamental pulse. We also show that walking solitons with shorter pulse durations are adiabatically excited under small group-velocity mismatch condition. The walking solitons experience deceleration or acceleration during compression, depending on the sign of the group-velocity-mismatch. The demonstrated adiabatic pulse shaping is useful for generation of shorter pulses with clean temporal profiles, efficient femtosecond second harmonic generation and group-velocity control.

© 2006 Optical Society of America

OCIS Codes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.5520) Ultrafast optics : Pulse compression

ToC Category:
Nonlinear Optics

History
Original Manuscript: July 25, 2006
Revised Manuscript: September 11, 2006
Manuscript Accepted: September 12, 2006
Published: October 2, 2006

Citation
Xianglong Zeng, Satoshi Ashihara, Nobuhide Fujioka, Tsutomu Shimura, and Kazuo Kuroda, "Adiabatic compression of quadratic temporal solitons in aperiodic quasi-phase-matching gratings," Opt. Express 14, 9358-9370 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-9358


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Menyuk, R. Schiek, and L. Torner, "Solitary waves due to Chi (2):Chi (2) cascading," J. Opt. Soc. Am. B 11, 2434-2443 (1994). [CrossRef]
  2. G. I. Stegeman, D. J. Hagan, and L. Torner, "Chi (2) Cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons," Opt. Quantum. Electron. 28, 1691-1740 (1996). [CrossRef]
  3. L. Torner and A. Barthelemy, "Quadratic solitons: recent developments," IEEE J. Quantum Electron. 39, 22-30 (2003). [CrossRef]
  4. A. V. Buryak, P. Di Trapani, D. Skryabin, and S. Trillo, "Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications," Phys. Rep. 370, 63-235 (2002). [CrossRef]
  5. A. V. Buryak and Y. S. Kivshar, "Spatial optical solitons governed by quadratic nonlinearity," Opt. Lett. 19, 1612-1615(1994). [CrossRef] [PubMed]
  6. L. Torner, "Stationary solitary waves with second-order nonlinearities," Opt. Commun. 114, 136-140 (1995). [CrossRef]
  7. W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, "Observation of two-dimensional Spatial Solitary Waves in a Quadratic Medium," Phys. Rev. Lett. 74, 5036-5039 (1995). [CrossRef] [PubMed]
  8. R. Malendevich, L. Jankovic, S. Polyakov, R. Fuerst, G. Stegeman, C. Bosshard, and P. Gunter, "Two-dimensional type I quadratic spatial solitons in KNbO3 near noncritical phase matching," Opt. Lett. 27, 631-633 (2002). [CrossRef]
  9. B. Bourliaguet, V. Couderc, A. Barthelemy, G. Ross, P. Smith, D. Hanna, and C. De Angelis, "Observation of quadratic spatial solitons in periodically poled lithium niobate," Opt. Lett. 24, 1410-1412 (1999). [CrossRef]
  10. H. Kim, L. Jankovic, G. Stegeman, S. Carrasco, L. Torner, D. Eger, and M. Katz, "Quadratic spatial solitons in periodically poled KTiOPO4," Opt. Lett. 28, 640-642 (2003). [CrossRef] [PubMed]
  11. L. Torner, C. Clausen, and M. Fejer, "Adiabatic shaping of quadratic solitons," Opt. Lett. 23, 903-905 (1998). [CrossRef]
  12. S. Carrasco, J. Torres, L. Torner, and R. Schiek, "Engineerable generation of quadratic solitons in synthetic phase matching," Opt. Lett. 25, 1273-1275 (2000). [CrossRef]
  13. R. Schiek, R. Iwanow, T. Pertsch, G. I. Stegeman, G. Schreiber, and W. Sohler, "One-dimensional spatial soliton families in optimally engineered quasi-phase-matched lithium niobate waveguides," Opt. Lett. 29, 596-598 (2004).
  14. F. W. Wise, L. Qian, and X. Liu, "Applications of Cascaded Quadratic Nonlinearities to Femtosecond Pulse Generation," J. Nonlinear Opt. Phys. Mater. 11, 317-338 (2002). [CrossRef]
  15. X. Liu, L. J. Qian, and F. Wise, "High-energy pulse compression by use of negative phase shifts produced by the cascade Chi (2):Chi (2) nonlinearity," Opt. Lett. 24, 1777-1779 (1999). [CrossRef]
  16. S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, "Soliton compression of femtosecond pulses in quadratic media," J. Opt. Soc. Am. B 19, 2505-2510 (2002). [CrossRef]
  17. K. Beckwitt, F. Ilday, and F. Wise, "Frequency shifting with local nonlinearity management in nonuniformly poled quadratic nonlinear materials," Opt. Lett. 29, 763-765 (2004). [CrossRef] [PubMed]
  18. J. Moses and F. W. Wise, "Soliton compression in quadratic media: high-energy few-cycle pulses with a frequency-doubling crystal," Opt. Lett. 31, 1881-1883 (2006). [CrossRef] [PubMed]
  19. S. Ashihara, T. Shimura, K. Kuroda, Nan Ei Yu, S. Kurimura, K. Kitamura, Myoungsik Cha, and Takunori Taira, "Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate," Appl. Phys. Lett. 84, 1055-1057 (2004). [CrossRef]
  20. N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, and T. Taira, "Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band," Opt. Lett. 27, 1046-1048 (2002). [CrossRef]
  21. S. Ashihara, T. Shimura, and K. Kuroda, "Group-velocity matched second-harmonic generation in tilted quasi-phase-matched gratings," J. Opt. Soc. Am. B 20, 853-856 (2003). [CrossRef]
  22. S. Chernikov and P. Mamyshev, "Femtosecond soliton propagation in fibers with slowly decreasing dispersion," J. Opt. Soc. Am. B 8, 1633-1641(1991). [CrossRef]
  23. L. Torner and G. Stegeman, "Soliton evolution in quasi-phase-matched second-harmonic generation," J. Opt. Soc. Am. B 14, 3127- 3133 (1997). [CrossRef]
  24. G. P. Agrawal, Nonlinear Fiber Optics, 3rd Edition, (Academic Press).
  25. D. Zelmon, D. Small, and D. Jundt, "Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. magnesium oxide doped lithium niobate," J. Opt. Soc. Am. B 14, 3319-3322 (1997). [CrossRef]
  26. G. Valiulis, A. Dubietis, R. Danielius, D. Caironi, A. Visconti, and P. Di Trapani, "Temporal solitons in Chi(2) materials with tilted pulses," J. Opt. Soc. Am. B 16, 722-731 (1999). [CrossRef]
  27. E. Martinez, "Achromatic phase matching for second harmonic generation of femtosecond pulses," IEEE J. Quantum Electron. 25, 2464-2468 (1989). [CrossRef]
  28. P. Di Trapani, D. Caironi, G. Valiulis, A. Dubietis, R. Danielius, and A. Piskarskas, "Observation of temporal solitons in second-harmonic generation with tilted pulses," Phys. Rev. Lett. 81, 570- 573 (1998). [CrossRef]
  29. N. Fujioka, S. Ashihara, H. Ono, T. Shimura, and K. Kuroda, "Group-velocity-matched noncollinear second-harmonic generation in quasi-phase matching," J. Opt. Soc. Am. B 22, 1283-1289 (2005). [CrossRef]
  30. A. Schober, M. Charbonneau-Lefort, and M. Fejer, "Broadband quasi-phase-matched second-harmonic generation of ultrashort optical pulses with spectral angular dispersion," J. Opt. Soc. Am. B 22, 1699-1713 (2005). [CrossRef]
  31. D. H. Jundt, "Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate," Opt. Lett. 22, 1553-1555 (1997). [CrossRef]
  32. J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, New York, 1996).
  33. M. Marangoni, C. Manzoni, R. Ramponi, G. Cerullo, F. Baronio, C. De Angelis, and K. Kitamura, "Group-velocity control by quadratic nonlinear interactions," Opt. Lett. 31, 534-536 (2006). [CrossRef] [PubMed]
  34. S. Carrasco, J. Torres, L. Torner, and F. W. Wise, "Walk-off acceptance for quadratic soliton generation," Opt. Commun. 191, 363-370 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited