OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 20 — Oct. 2, 2006
  • pp: 9391–9407

Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation

Michael H. Frosz, Ole Bang, and Anders Bjarklev  »View Author Affiliations

Optics Express, Vol. 14, Issue 20, pp. 9391-9407 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (482 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We numerically investigate supercontinuum generation using continuous-wave pumping. It is found that energy transfer during collision of solitons plays an important role. The relative influence of Raman gain on spectral broadening is shown to depend on the width of the calculation time window. Our results indicate that increasing the spectral linewidth of the pump can decrease the supercontinuum spectral width. Using a fiber with smaller dispersion at the pump wavelength reduces the required fiber length by decreasing the temporal width of the solitons formed from modulation instability. This also reduces the sensitivity to the pump spectral linewidth.

© 2006 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(190.5650) Nonlinear optics : Raman effect

ToC Category:
Nonlinear Optics

Original Manuscript: July 5, 2006
Revised Manuscript: September 13, 2006
Manuscript Accepted: September 13, 2006
Published: October 2, 2006

Michael H. Frosz, Ole Bang, and Anders Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. Alfano, ed., The Supercontinuum Laser Source: Fundamentals With Updated References, 2nd ed. (Springer-Verlag, New York, 2005).
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000). [CrossRef]
  3. K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding,R. Kristiansen, K. P. Hansen, and J. J. Larsen, "Supercontinuum generation in a photoniccrystal fiber with two zero dispersion wavelengths," Opt. Express 12, 1045-1054 (2004). [CrossRef] [PubMed]
  4. G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola, "Enhanced bandwidth of supercontinuum generated in microstructured fibers," Opt. Express 12, 3471-3480 (2004). [CrossRef] [PubMed]
  5. M. H. Frosz, P. Falk, and O. Bang, "The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength," Opt. Express 13, 6181-6192 (2005). [CrossRef] [PubMed]
  6. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000). [CrossRef]
  7. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, "Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping," J. Opt. Soc. Am. B 19, 765-771 (2002). [CrossRef]
  8. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers," J. Opt. Soc. Am. B 19, 753-764 (2002). [CrossRef]
  9. M. Prabhu, N. S. Kim, and K. Ueda, "Ultra-Broadband CW Supercontinuum Generation Centered at 1483.4 nm from Brillouin/Raman Fiber Laser," Jpn. J. Appl. Phys. 39, L291-L293 (2000). http://dx.doi.org/10.1143/JJAP.39.L291. [CrossRef]
  10. J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen, "Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers," Appl. Phys. B 77, 211-218 (2003). http://dx.doi.org/10.1007/s00340-003-1201-z. [CrossRef]
  11. A. V. Avdokhin, S. V. Popov, and J. R. Taylor, "Continuous-wave, high-power, Raman continuum generation in holey fibers," Opt. Lett. 28, 1353-1355 (2003). [CrossRef] [PubMed]
  12. P.-L. Hsiung, Y. Chen, T. Ko, J. G. Fujimoto, C. J. S. de Matos, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, "Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source," Opt. Express 12, 5287-5295 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-22-5287. [CrossRef] [PubMed]
  13. C. J. S. de Matos, S. V. Popov, and J. R. Taylor, "Temporal and noise characteristics of continuous-wave-pumped continuum generation in holey fibers around 1300 nm," Appl. Phys. Lett. 85, 2706-2708 (2004). [CrossRef]
  14. J. H. Lee, Y.-G. Han, and S. B. Lee, "Experimental study on seed light source coherence dependence of continuous-wave supercontinuum performance," Opt. Express 14, 3443-3452 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-8-3443. [CrossRef] [PubMed]
  15. A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, "Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers," Opt. Express 12, 2838-2843 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2838. [CrossRef] [PubMed]
  16. S. M. Kobtsev and S. V. Smirnov, "Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump," Opt. Express 13, 6912-6918 (2005). [CrossRef] [PubMed]
  17. F. Vanholsbeeck, S. Martin-Lopez, M. González-Herráez, and S. Coen, "The role of pump incoherence in continuous-wave supercontinuum generation," Opt. Express 13, 6615-6623 (2005). [CrossRef] [PubMed]
  18. A. K. Abeeluck and C. Headley, "Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation," Opt. Lett. 30, 61-63 (2005). [CrossRef] [PubMed]
  19. B. Barviau, S. Randoux, and P. Suret, "Spectral broadening of a multimode continous-wave optical field propagating in the normal dispersion regime of a fiber," Opt. Lett. 31, 1696-1698 (2006). [CrossRef] [PubMed]
  20. E. A. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, "Numerical analysis of the Raman spectrum evolution and soliton pulse generation in single-mode fibers," J. Opt. Soc. Am. B 8, 1626-1632 (1991). http://www.opticsinfobase.org/abstract.cfm?URI=josab-8-8-1626. [CrossRef]
  21. M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, and D. S. Chemla, "Femtosecond distributed soliton spectrum in fibers," J. Opt. Soc. Am. B 6, 1149-1158 (1989). http://www.opticsinfobase.org/abstract.cfm?URI=josab-6-6-1149. [CrossRef]
  22. R. G. Smith, "Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering," Appl. Opt. 11, 2489-2494 (1972). [CrossRef] [PubMed]
  23. S. B. Cavalcanti, G. P. Agrawal, and M. Yu, "Noise amplification in dispersive nonlinear media," Phys. Rev. A 51, 4086-4092 (1995). http://dx.doi.org/10.1103/PhysRevA.51.4086. [CrossRef] [PubMed]
  24. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, San Diego, CA, USA, 2001).
  25. P. L. François, "Nonlinear propagation of ultrashort pulses in optical fibers: total field formulation in the frequency domain," J. Opt. Soc. Am. B 8, 276-293 (1991). http://www.opticsinfobase.org/abstract.cfm?URI=josab-8-2-276. [CrossRef]
  26. S. G. Johnson and J. D. Joannopoulos, "Block-Iterative Frequency-Domain Methods for Maxwell’s Equations in a Planewave Basis," Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  27. K. P. Hansen, Crystal Fibre A/S, Personal communication.
  28. J. Lægsgaard, N. A. Mortensen, and A. Bjarklev, "Mode areas and field-energy distribution in honeycomb photonic bandgap fibers," J. Opt. Soc. Am. B 20, 2037-2045 (2003). [CrossRef]
  29. K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989). [CrossRef]
  30. J. W. Goodman, Statistical Optics (John Wiley & Sons Inc., 2000). ISBN 0471399167.
  31. W. K. Marshall, B. Crosignani, and A. Yariv, "Laser phase noise to intensity noise conversion by lowest-order group-velocity dispersion in optical fiber:exact theory," Opt. Lett. 25, 165-167 (2000). http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-3-165. [CrossRef]
  32. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C++: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge, 2002). http://www.nr.com.
  33. V. E. Zakharov and A. B. Shabat, "Exact theory of 2-dimensional self-focusing and one-dimenstional selfmodulation of waves in nonlinear media," Sov. Phys. JETP 34, 62 (1972).
  34. H. A. Haus and W. S. Wong, "Solitons in optical communications," Rev. Mod. Phys. 68, 423-444 (1996). http://link.aps.org/abstract/RMP/v68/p423. [CrossRef]
  35. A. Peleg, M. Chertkov, and I. Gabitov, "Interchannel interaction of optical solitons," Phys. Rev. E 68, 026605 (2003). http://link.aps.org/abstract/PRE/v68/e026605. [CrossRef]
  36. S. Chi and S. Wen, "Raman cross talk of soliton collision in a lossless fiber," Opt. Lett. 14, 1216-1218 (1989). [CrossRef] [PubMed]
  37. B. A. Malomed, "Soliton-collision problem in the nonlinear Schr¨odinger equation with a nonlinear damping term," Phys. Rev. A 44, 1412-1414 (1991). http://link.aps.org/abstract/PRA/v44/p1412. [CrossRef] [PubMed]
  38. Y. Chung and A. Peleg, "Strongly non-Gaussian statistics of optical soliton parameters due to collisions in the presence of delayed Raman response," Nonlinearity 18, 1555-1574 (2005). http://stacks.iop.org/Non/18/1555. [CrossRef]
  39. O. Bang and M. Peyrard, "Generation of high-energy localized vibrational modes in nonlinear Klein-Gordon lattices," Phys. Rev. E 53, 4143-4152 (1996). http://link.aps.org/abstract/PRE/v53/p4143. [CrossRef]
  40. J. K. Lucek and K. J. Blow, "Soliton self-frequency shift in telecommunications fiber," Phys. Rev. A 45, 6666-6674 (1992). http://dx.doi.org/10.1103/PhysRevA.45.6666. [CrossRef] [PubMed]
  41. Y. Kodama and K. Nozaki, "Soliton interaction in optical fibers," Opt. Lett. 12, 1038-1040 (1987). [CrossRef] [PubMed]
  42. J. P. Gordon, "Theory of the soliton self-frequency shift," Opt. Lett. 11, 662-664 (1986). [CrossRef] [PubMed]
  43. J. Herrmann and A. Nazarkin, "Soliton self-frequency shift for pulses with a duration less than the period of molecular oscillations," Opt. Lett. 19, 2065-2067 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (1984 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited