OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 20 — Oct. 2, 2006
  • pp: 9544–9550

Nonlinear enhancement of femtosecond laser ablation efficiency by hybridization with nanosecond laser

J. S. Yahng, B. H. Chon, C. H. Kim, S. C. Jeoung, and H. R. Kim  »View Author Affiliations


Optics Express, Vol. 14, Issue 20, pp. 9544-9550 (2006)
http://dx.doi.org/10.1364/OE.14.009544


View Full Text Article

Enhanced HTML    Acrobat PDF (1560 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Synchronization of femtosecond laser with nanosecond (~250 ns) laser results in a large enhancement in laser ablation efficiency of the Si wafer 12 times more than that with an independent laser exposure. Transient changes in the status of target material due to the proceeding nanosecond laser increase the femtosecond laser ablation efficiency.

© 2006 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.7090) Lasers and laser optics : Ultrafast lasers

ToC Category:
Ultrafast Optics

History
Original Manuscript: June 30, 2006
Revised Manuscript: September 18, 2006
Manuscript Accepted: September 22, 2006
Published: October 2, 2006

Citation
J. S. Yahng, B. H. Chon, C. H. Kim, S. C. Jeoung, and H. R. Kim, "Nonlinear enhancement of femtosecond laser ablation efficiency by hybridization with nanosecond laser," Opt. Express 14, 9544-9550 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-9544


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Bärsch, K. Körber, A. Ostendorf, and K. H. Tönshoff, "Ablation and cutting of planar silicon devices using femtosecond laser pulses," Appl. Phys. A 77, 237-242 (2003).
  2. C. Li, S. Nikumb, and F. Wong, "An optimal process of femtosecond laser cutting of NiTi shape memory alloy for fabrication of miniature devices," Opt. Lasers Eng. 44, 1078-1087 (2006). [CrossRef]
  3. T. Matsumura, A. Kazama, and T. Yagi, "Generation of debris in the femtosecond laser machining of a silicon substrate," Appl. Phys. A 81, 1393-1398 (2005). [CrossRef]
  4. M. Park, B. H. Chon, H. S. Kim, S. C. Jeoung, D. Kim, J. I. Lee, H. Y. Chu, H. R. Kim, "Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode application," Opt. Lasers Eng. 44, 138-146 (2006). [CrossRef]
  5. J. Li and G. K. Ananthasuresh, "A quality study on the excimer laser micromachining of electro-thermal-compliant micro devices," J. Micromech. Microeng. 11,38-47 (2001). [CrossRef]
  6. J. H. Klein-Wiele, J. Bekesi, and P. Simon, "Sub-micron patterning of solid materials with ultraviolet femtosecond pulsesm," Appl. Phys. A 79, 775-778 (2004). [CrossRef]
  7. A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, "A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomaching," Appl. Phys. B 77, 25-30 (2003). [CrossRef]
  8. T. C. Chen and R. B. Darling, "Parametric studies on pulsed near ultraviolet frequency tripled Nd:YAG laser micromachining of sapphire and silicon," J. Mater. Process. Technol. 169, 214-218 (2005). [CrossRef]
  9. J. S. Yahng, S. C. Jeoung, D. S. Choi, D. Cho, J. H. Kim, H. M. Choi, and J. S. Paik, "Fabrication of microfluidic devices by using a femtosecond laser micromachining technique and μ-PIV studies on its fluid dynamics," J. Korean Phys. Soc. 47, 977-981 (2005).
  10. M. A. Seo, D. S. Kim, H. S. Kim, D. S. Choi, and S. C. Jeoung, "Formation of photoluminescent germanium nanostructures by femtosecond laser processing on bulk germanium: role of ambient gases," Opt. Express 14, 4908-4914 (2006). [CrossRef] [PubMed]
  11. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005). [CrossRef]
  12. A. Zoubir, L. Shah, K. Richardson, and M. Richardson, "Practical uses of femtosecond laser micro-materials processing, " Appl. Phys. A 77, 311-315 (2003).
  13. P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, "Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass," Appl. Phys. A 69, S763-S766 (1999). [CrossRef]
  14. J. Jandeleit, A. Horn, R. Weichenhain, E. W. Kreutz, and R. Poprawe, "Fundamental investigations of micromachining by nano- and picosecond laser radiation," Appl. Surf. Sci. 127-129, 885-891 (1998). [CrossRef]
  15. M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, "Femtosecond versus nanosecond laser machining: comparison of induced stress and structural changes in silicon wafers," Appl. Surf. Sci. 242, 162-167 (2005). [CrossRef]
  16. C. Y. Chien and M. C. Gupta, "Pulse width effect in ultrafast laser processing of materials," Appl. Phys. A 81, 1257-1263 (2005). [CrossRef]
  17. S. J. Ahn, D. W. Kim, H. S. Kim, K. H. Cho, and S. S. Choi, "Laser fabrication of micron-size apertures for electron beam microcolumns, " Appl. Phys. A 69, S527-S530 (1999). [CrossRef]
  18. H. Haferkamp, and D. Seebaum, "Beam delivery by adaptive optics for material processing applications using high-power CO2 lasers," in Laser Materials Processing: Industrial and Microelectronics Applications, E. Beyer, M. Cantello, A. V. La Rocca, L. D. Laude, F. O. Olsen, G. Sepold, eds., Proc. SPIE 2207, 156-164 (1994). [CrossRef]
  19. T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, "Femtosecond laser-induced formation of spikes on silicon," Appl. Phys. A 70, 383-385 (2000). [CrossRef]
  20. S. C. Jeoung, H. S. Kim, M. I. Park, J. Lee, C. S. Kim, and C. O. Park, "Preparation of room-temperature photoluminescent nanoparticles by ultrafast laser processing of single-crystalline Ge," Jpn. J. Appl. Phys. 44, 5278-5281 (2005). [CrossRef]
  21. F. Benitez, F. Sanchez, V. Trtik, M. Varela, M. Bibes, B. Martinez, and J. Fontcuberta, "Laser irradiation of SrTiO3 single crystals," Appl. Phys. A 69, S501-S504 (1999). [CrossRef]
  22. M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, "Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers," Appl. Surf. Sci. 242, 162-167 (2005). [CrossRef]
  23. M. I. Park, C. S. Kim, C. O. Park, and S. C. Jeoung, "XRD studies on the femtosecond laser ablated single-crystal germanium in air," Opt. Lasers. Eng. 43, 1322-1329 (2005) [CrossRef]
  24. W. Marine, N. M. Bulgakova, L. Patrone, and I. Ozerov, "Electronic mechanism of ion expulsion under UV nanosecond laser excitation of silicon: Experiment and modeling," Appl. Phys. A 79, 771-774 (2004). [CrossRef]
  25. H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, "Laser ablation thresholds of silicon for different pulse durations: theory and experiment," Appl. Surf. Sci. 197-198, 839-844 (2002). [CrossRef]
  26. L. Gavioli, M. G. Betti, and C. Mariani, "Dynamics-induced surface metallization of Si(100)," Phys. Rev. Lett. 77, 3869-3872 (1996). [CrossRef] [PubMed]
  27. V. R. Dhanak, A. Santoni, and L. Petaccia, "A high temperature X-ray absorption and valence band spectroscopy study of the Si(100) surface," J. Electron Spectrosc. Relat. Phenom. 114-116, 471 (2001).
  28. L. V. Zhigilei and B. J. Garrison, "Mechanisms of laser ablation from molecular dynamics simulations: dependence on the initial temperature and pulse duration," Appl. Phys. A 69, S75-S80 (1999).
  29. J. S. Yahng, J. R. Nam, and S. C. Jeoung are preparing a manuscript to be called "Temperature dependence of ultrafast laser ablation threshold of crystalline silicone."
  30. D. J. Hwang, C. P. Grigoropoulos, and T. Y. Choi, "Efficiency of silicon micromachining by femtosecond laser pulses in ambient air," J. Appl. Phys. 99, 083101 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited