OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 21 — Oct. 16, 2006
  • pp: 10050–10059

Influence of satellite motion on polarization qubits in a Space-Earth quantum communication link

Cristian Bonato, Markus Aspelmeyer, Thomas Jennewein, Claudio Pernechele, Paolo Villoresi, and Anton Zeilinger  »View Author Affiliations


Optics Express, Vol. 14, Issue 21, pp. 10050-10059 (2006)
http://dx.doi.org/10.1364/OE.14.010050


View Full Text Article

Enhanced HTML    Acrobat PDF (202 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In a Space quantum-cryptography experiment a satellite pointing system is needed to send single photons emitted by the source on the satellite to the polarization analysis apparatus on Earth. In this paper a simulation is presented regarding how the satellite pointing systems affect the polarization state of the single photons, to help designing a proper compensation system.

© 2006 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(260.5430) Physical optics : Polarization
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

History
Original Manuscript: May 31, 2006
Revised Manuscript: August 8, 2006
Manuscript Accepted: August 14, 2006
Published: October 16, 2006

Citation
Cristian Bonato, Markus Aspelmeyer, Thomas Jennewein, Claudio Pernechele, Paolo Villoresi, and Anton Zeilinger, "Influence of satellite motion on polarization qubits in a Space-Earth quantum communication link," Opt. Express 14, 10050-10059 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-21-10050


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, C. G. Peterson, and C. M. Simmons, Practical free-space quantum key distribution over 1 km," Phys. Rev. Lett. 81, 3283-3286 (1998). [CrossRef]
  2. R. J. Hughes, J. E. Nordholt, D. Derkacs, J. C. Peterson, "Practical free-space quantum key distribution over 10 km in daylight and at night," New J. Phys. 4, 43.1-43.14 (2002). [CrossRef]
  3. C. Kurtsiefer, P. Zarda, M. Holder, H. Weinfurter, P. Gormar, P. R. Tapster, and J. G. Rarity, "A step toward global quantum key distribution," Nature 419, 450 (2002). [CrossRef] [PubMed]
  4. M. Aspelmeyer,  et al., "Long distance free-space distribution of quantum entanglement," Science 301, 621 (2003). [CrossRef] [PubMed]
  5. K. J. Resch,  et al., "Distributing entanglement and single photons through an intra-city, free-space quantum channel," Opt. Express 13, 202-209 (2005). [CrossRef] [PubMed]
  6. C.-Z. Peng, T. Yang, X.-H. Bao, J.-Zhang, X.-M. Jin, F.-J. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B.-L. Tian and J.-W. Pan, "Experimental free-space distribution of entangled photon pairs over 13 Km: towards satellite-based global quantum communication," Phys. Rev. Lett. 94, 150501 (2005). [CrossRef] [PubMed]
  7. R. Ursin,  et al., "Free-space distribution of entanglement and single photons over 144 Km," quant-ph/0607182.
  8. J. E. Nordholt, R. J. Hughes, J. R. Morgan, C. G. Peterson, and C. C. Wipf, "Present and future quantum key distribution," in Free-Space Laser Communication Technologies XIV, G. Stephen Mecherle, ed. Proc. SPIE 4635, 116-126 (2002). [CrossRef]
  9. M. Aspelmeyer, T. Jennewein, M. Pfennigbauer, W. R. Leeb, A. Zeilinger, "Long distance quantum communication with entangled photons using satellites," IEEE J. Sel. Top. Quantum Electron. 9, 1541 (2003). [CrossRef]
  10. P. Villoresi, F. Tamburini, M. Aspelmeyer, T. Jennewein, R. Ursin, C. Pernechele, G. Bianco, A. Zeilinger, and C. Barbieri, "Space-to-ground quantum-communication using an optical ground station: a feasibility study," Proc. SPIE: Quantum Communications and Quantum Imaging, II conference in Denver (2004).
  11. J. G. Rarity, P. R. Tapster, P. M. Gorman, and P. Knight, "Ground to satellite secure key exchange using quantum cryptography," New J. Phys. 4, 82.1-82.21 (2002). [CrossRef]
  12. M. Er-Iong, H. Zheng-fu, G. Shun-sheng, Z. Tao, D. Da-sheng, and G. Guang-can, "Background noise of satellite-to-ground quantum key distribution," New J. Phys. 7, 215 (2005). [CrossRef]
  13. M. Pfennigbauer, M. Aspelmeyer, W. R. Leeb, G. Baister, T. Dreischer, T. Jennewein, G. Neckamm, J. M. Perdigues, H. Weinfurter, and A. Zeilinger, "Satellite-based quantum communication terminal employing stateof-the-art technology," JON 4, 549-560, (2005).
  14. W. Tittel and G. Weihs, "Photonic entanglement for fundamental tests and quantum communications," Quantum Inf. Comput. 1, 3-56 (2001).
  15. A. Sehat,  et al., "Quantum polarization properties of two-mode energy eigenstates," PRA 71, 033818 (2004).
  16. E. D. Palik (ed.), Handbook of optical constants of solids, (San Diego, Academic Press, 1998).
  17. M. Born and E. Wolf, Principles of Optics, sixth ed., (Pergamon Press, Oxford, England, 1993).
  18. D. H. Hoehn, "Depolarization of a laser beam at 6328 A due to atmospheric transmission," Appl. Opt. 8, 367 (1968). [CrossRef]
  19. S. Jorna, "Atmospheric depolarization and stimulated Brillouin scattering," Appl. Opt. 10, 2661 (1971). [CrossRef] [PubMed]
  20. W. E. Forsythe, Smithsonian Physical Tables, (9th Revised Edition, Knovel).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited