OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 21 — Oct. 16, 2006
  • pp: 9643–9656

Double-shot depth-resolved displacement field measurement using phase-contrast spectral optical coherence tomography

Manuel H. De la Torre-Ibarra, Pablo D. Ruiz, and Jonathan M. Huntley  »View Author Affiliations

Optics Express, Vol. 14, Issue 21, pp. 9643-9656 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (729 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a system for measuring sub-surface displacement fields within a scattering medium using a phase contrast version of spectral Optical Coherence Tomography. The system provides displacement maps within a 2-D slice extending into the sample with a sensitivity of order 10 nm. The data for a given deformation state is recorded in a single image, potentially allowing sub-surface displacement and strain mapping of moving targets. The system is based on low cost components and has no moving parts. The theoretical basis for the system is presented along with experimental results from a simple well-controlled geometry consisting of independently-tilting glass sheets. Results are validated using standard two-beam interferometry. A modified system was used to measure through-the-thickness phase changes within a porcine cornea due to displacements produced by an increase in the intraocular pressure.

© 2006 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

ToC Category:
Imaging Systems

Original Manuscript: June 15, 2006
Revised Manuscript: August 23, 2006
Manuscript Accepted: September 15, 2006
Published: October 16, 2006

Virtual Issues
Vol. 1, Iss. 11 Virtual Journal for Biomedical Optics

Manuel H. De la Torre-Ibarra, Pablo D. Ruiz, and Jonathan M. Huntley, "Double-shot depth-resolved displacement field measurement using phase-contrast spectral optical coherence tomography," Opt. Express 14, 9643-9656 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Rastogi, Optical Measurement Techniques and Applications (The Artech house publishers, 1997).
  2. A. Marañon, A. D. Nurse, J. M. Huntley and P. D. Ruiz, "A low population genetic algorithm applied to characterization of sub-surface delamination", in Proceedings of the International Conference on Computational Intelligence for Modeling, Control and Automation (CIMCA 2004), M. Mohammadian ed. (ISBN 1740881885, 2004) pp. 12-14.
  3. T. Abe, Y. Mitsunaga, and H. Koga, "Photoelastic computer tomography: a novel measurement method for axial residual stress profile in optical fibers," J. Opt. Soc. Am. A 3, 133-138 (1986). [CrossRef]
  4. Hillar Aben, Andrei Errapart, Leo Ainola, and Johan Anton, "Photoelastic tomography for residual stress measurement in glass," Opt. Eng. 44, 93601 (2005). [CrossRef]
  5. Mary T. Draney,  et al., "Quantification of Vessel Wall Cyclic Strain Using Cine Phase Contrast Magnetic Resonance Imaging," Annals of Biomed. Eng. 30, 1033-1045 (2002). [CrossRef]
  6. SteeleDD , ChenevertTL , SkovorodaAR  and EmelianovSY . "Three-dimensional static displacement stimulated echo NMR elasticity imaging," Physics in Medicine and Biology 45, 1633-1648 (2000). [CrossRef] [PubMed]
  7. B. K. Bay, T. S. Smith, D. P. Fyhrie and M. Saad, "Digital volume correlation: three-dimensional strain mapping using X-ray tomography," Exp. Mech. 39, 217-226 (1999). [CrossRef]
  8. J. Schmitt, "OCT elastography: imaging microscopic deformation and strain of tissue," Opt. Express 3, 199-211 (1998), http://www.opticsinfobase.org/abstract.cfm?URI=oe-3-6-199 [CrossRef] [PubMed]
  9. A. F. Fercher, W. Drexler, C. K. Hitzenberger and T. Lasser, "Optical coherence tomography -principles and applications," Rep. Prog. Phys. 66, 239-303 (2003). [CrossRef]
  10. T. Dresel, G. Hausler, and H. Venzke, "Three-dimensional sensing of rough surfaces by coherence radar," Appl. Opt. 31, 919-925 (1992). [CrossRef] [PubMed]
  11. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995). [CrossRef]
  12. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, "Spectral-domain phase microscopy," Opt. Lett. 30, 1162-1164 (2005). [CrossRef] [PubMed]
  13. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, "Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging," Opt. Lett. 30, 2131-2133 (2005). [CrossRef] [PubMed]
  14. Y. Yasuno, S. Makita, T. Endo, G. Aoki, H. Sumimura, M. Itoh, and T. Yatagai, "One-shot-phase-shifting Fourier domain optical coherence tomography by reference wavefront tilting," Opt. Express 12, 6184-6191 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-25-6184 [CrossRef] [PubMed]
  15. B. Grajciar, M. Pircher, A. Fercher, and R. Leitgeb, "Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye," Opt. Express 13, 1131-1137 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-4-1131 [CrossRef] [PubMed]
  16. M. Wojtkowski, R. Leigeb, A. Kowalczyk, T. Bajraszewski and A. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). [CrossRef] [PubMed]
  17. S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, "Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography," Opt. Express 13, 444-452 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-2-444 [CrossRef] [PubMed]
  18. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2404 [CrossRef] [PubMed]
  19. B. Cense, N. Nassif, T. Chen, M. Pierce, S. -H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2435 [CrossRef] [PubMed]
  20. Maciej Wojtkowski, Tomasz Bajraszewski, Piotr Targowski and Andrzej Kowalczyk, "Real-time in vivo imaging by high-speed spectral optical coherence tomography," Opt. Lett. 28, 1745-1747 (2003). [CrossRef] [PubMed]
  21. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski and T. Bajraszewski, "Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography," Opt. Lett. 29, 171-173 (2004). [CrossRef] [PubMed]
  22. B. Park, M. C. Pierce, B. Cense, S. -H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm," Opt. Express 13, 3931-3944 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-11-3931 [CrossRef] [PubMed]
  23. M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-18-2183 [CrossRef] [PubMed]
  24. JohannesF. de Boer, Barry Cense, B. Hyle Park, Mark C. Pierce, Guillermo J. Tearney and Brett E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003). [CrossRef] [PubMed]
  25. A. V. Zvyagin, "Fourier-domain optical coherence tomography: optimization of signal-to-noise ratio in full space," Opt. Commun. 242, 97-108 (2004). [CrossRef]
  26. R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-8-889 [CrossRef] [PubMed]
  27. B. Hyle Park, MarkC. Pierce, Barry Cense and Johannes F. de Boer, "Optic axis determination accuracy for fiber-based polarization-sensitive optical coherence tomography," Opt. Lett. 30, 2587-2589 (2005). [CrossRef] [PubMed]
  28. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh and T. Yatagai, "Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002). [CrossRef]
  29. G. Gülker, K. D. Hinsch and A. Kraft, "Low coherence ESPI in the investigation of ancient terracotta warriors," in Proceedings of Speckle Metrology 2003, K. Gastinger, O. Løckberg and S. Winther, eds., Proc. SPIE 4933, 53-58 (2003).
  30. P. D. Ruiz, Y. Zhou, J. M. Huntley and R. D. Wildman, "Depth-resolved whole field displacement measurement using wavelength scanning interferometry," J. Opt. A: Pure Appl. Opt. 6, 679-683 (2004). [CrossRef]
  31. P. D. Ruiz, J. M. Huntley and R. D. Wildman, "Depth-resolved whole-field displacement measurements by wavelength-scanning electronic speckle pattern interferometry," Appl. Opt. 44, 3945-3953 (2005). [CrossRef] [PubMed]
  32. J. Schwider and L. Zhou, "Dispersive interferometric profilometer," Opt. Lett. 19, 995-997 (1994). [CrossRef] [PubMed]
  33. J. M. Huntley, "Automated Analysis of Speckle Interferograms," in Proceedings of Digital Speckle Pattern Interferometry and Related Techniques, P. K. Rastogi ed., (Chichester, West Sussex, England, John Wiley & Sons., 2001) pp. 59-139.
  34. Y. Teramura, M. Suekuni and F. Kannari, "Two-dimensional optical coherence tomography using spectral domain interferometry," J. Opt. A: Pure Appl. Opt. 2, 21-26 (2000). [CrossRef]
  35. M. Takeda, H. Ina and S. Kobayashi, "Fourier-transform method of fringe pattern analysis for computer based topography and interferometry," J. Opt. Soc. Am. 72, 156-160 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MPG (410 KB)     
» Media 2: MPG (453 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited