OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 21 — Oct. 16, 2006
  • pp: 9794–9804

Calculation of material properties and ray tracing in transformation media

D. Schurig, J. B. Pendry, and D. R. Smith  »View Author Affiliations


Optics Express, Vol. 14, Issue 21, pp. 9794-9804 (2006)
http://dx.doi.org/10.1364/OE.14.009794


View Full Text Article

Enhanced HTML    Acrobat PDF (265 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Complex and interesting electromagnetic behavior can be found in spaces with non-flat topology. When considering the properties of an electromagnetic medium under an arbitrary coordinate transformation an alternative interpretation presents itself. The transformed material property tensors may be interpreted as a different set of material properties in a flat, Cartesian space. We describe the calculation of these material properties for coordinate transformations that describe spaces with spherical or cylindrical holes in them. The resulting material properties can then implement invisibility cloaks in flat space. We also describe a method for performing geometric ray tracing in these materials which are both inhomogeneous and anisotropic in their electric permittivity and magnetic permeability.

© 2006 Optical Society of America

OCIS Codes
(080.2710) Geometric optics : Inhomogeneous optical media
(220.2740) Optical design and fabrication : Geometric optical design
(260.1180) Physical optics : Crystal optics
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Metamaterials

History
Original Manuscript: August 18, 2006
Revised Manuscript: September 27, 2006
Manuscript Accepted: September 29, 2006
Published: October 16, 2006

Citation
D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express 14, 9794-9804 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-21-9794


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780 (2006). [CrossRef] [PubMed]
  2. U. Leonhardt, "Optical conformal mapping," Science 312, 1777 (2006). [CrossRef] [PubMed]
  3. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and Negative Refractive Index," Science 305, 788 (2004). [CrossRef] [PubMed]
  4. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Electromagnetic waves: Negative refraction by photonic crystals," Nature 423, 604 (2003). [CrossRef] [PubMed]
  5. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz Magnetic Response from Artificial Materials," Science 303, 1494-1496 (2004). [CrossRef] [PubMed]
  6. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic Response of Metamaterials at 100 Terahertz," Science 306, 1351-1353 (2004). [CrossRef] [PubMed]
  7. D. Schurig, J. J. Mock, and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Appl. Phys. Lett. 88(4), 041,109 (2006).
  8. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science (2006). In press. [CrossRef] [PubMed]
  9. A. Alu and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E 72, 016,623 (2005). [CrossRef]
  10. G. W. Milton and N.-A. P. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. Roy. Soc. London A 462, 1364 (2006).
  11. U. Leonhardt and T. G. Philbin, "General relativity in electrical engineering," (2006). http://xxx.arxiv.org/abs/cond-mat/0607418.
  12. T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, "Free-space microwave focusing by a negative-index gradient lens," Appl. Phys. Lett. 88, 081,101 (2006). [CrossRef]
  13. E.J. Post, Formal structure of electromagnetics (Wiley, New York, 1962).
  14. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
  15. J. A. Kong, Electromagnetic Wave Theory, 2nd ed. (Wiley-Interscience, New York, 1990).
  16. D. M. Shyroki, "Exact equivalent-profile formulation for bent optical waveguides," (2006). Unpublished.
  17. A. J. Ward and J. B. Pendry, "Refraction and geometry in maxwell’s equations," J. Mod. Opt. 43(4), 773 - 793 (1996). [CrossRef]
  18. Y. A. Kravtsov and Y. I. Orlov, Geometrical optics of inhomogeneous media (Springer-Verlag, Berlin, 1990). [CrossRef]
  19. H. C. Chen, Theory of electromagnetic waves: A coordinate free approach, pp. 216-218 (McGraw-Hill, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited