OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 21 — Oct. 16, 2006
  • pp: 9909–9916

Design of holographic structures using genetic algorithms

James W. Rinne and Pierre Wiltzius  »View Author Affiliations


Optics Express, Vol. 14, Issue 21, pp. 9909-9916 (2006)
http://dx.doi.org/10.1364/OE.14.009909


View Full Text Article

Enhanced HTML    Acrobat PDF (1861 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed a general technique using genetic algorithms to design photonic crystals to be fabricated by holographic lithography. In contrast to current analytical approaches that rely almost exclusively on symmetry considerations, this technique allows for high-fidelity approximations to real-space structures without limiting the search space to a prescribed set of symmetries. We have used this new technique to design a structure having a complete photonic band gap of 28%, the largest yet reported for holographic lithography.

© 2006 Optical Society of America

OCIS Codes
(120.4610) Instrumentation, measurement, and metrology : Optical fabrication
(220.3740) Optical design and fabrication : Lithography
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.3160) Physical optics : Interference

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: August 10, 2006
Revised Manuscript: September 29, 2006
Manuscript Accepted: September 30, 2006
Published: October 16, 2006

Citation
James W. Rinne and Pierre Wiltzius, "Design of holographic structures using genetic algorithms," Opt. Express 14, 9909-9916 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-21-9909


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited spontaneous emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58,2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, "Strong localization of Photons in certain disordered Dielectric Superlattices," Phys. Rev. Lett. 58,2486-2489 (1987). [CrossRef] [PubMed]
  3. K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in Periodic Dielectric Structures," Phys. Rev. Lett. 65,3152-3155 (1990). [CrossRef] [PubMed]
  4. M. Maldovan and E. L. Thomas, "Diamond-structured photonic crystals," Nat. Mater. 3,593-600 (2004). [CrossRef] [PubMed]
  5. R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith and K. Kash, "Novel applications of photonic band gap materials - low-loss bends and high q-cavities," J. Appl. Phys. 75,4753-4755 (1994). [CrossRef]
  6. E. Centeno and D. Felbacq, "Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity," Phys. Rev. B 62,R7683-R7686 (2000). [CrossRef]
  7. A. P. Philipse, "Solid Opaline Packings of Colloidal Silica Spheres," J. Mater. Sci. Lett. 8,1371-1373 (1989). [CrossRef]
  8. S. Noda, N. Yamamoto and A. Sasaki, "New realization method for three-dimensional photonic crystal in optical wavelength region," Jpn. J. Appl. Phys. Part 2 35, L 909-L 912 (1996). [CrossRef]
  9. M. Straub and M. Gu, "Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization," Opt. Lett. 27,1824-1826 (2002). [CrossRef]
  10. V. Berger, O. Gauthierlafaye and E. Costard, "Photonic Band Gaps and Holography," J. Appl. Phys. 82,60-64 (1997). [CrossRef]
  11. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404,53-56 (2000). [CrossRef] [PubMed]
  12. N. Tetreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: Silicon double inversion of polymer templates," Adv. Mater. 18,457-460 (2006). [CrossRef]
  13. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405,437-440 (2000). [CrossRef] [PubMed]
  14. H. M. Yates, W. R. Flavell, M. E. Pemble, N. P. Johnson, S. G. Romanov, and C. M. Sotomayortorres, "Novel quantum confined structures via atmospheric pressure mocvd growth in asbestos and opals," J. Cryst. Growth 170,611-615 (1997). [CrossRef]
  15. J. S. King, C. W. Neff, C. J. Summers, W. Park, S. Blomquist, E. Forsythe, and D. Morton, "High-filling-fraction inverted ZnS opals fabricated by atomic layer deposition," Appl. Phys. Lett. 83,2566-2568 (2003). [CrossRef]
  16. J. S. King, D. Heineman, E. Graugnard, and C. J. Summers, "Atomic layer deposition in porous structures: 3D photonic crystals," Appl. Surf. Sci. 244,511-516 (2005). [CrossRef]
  17. O. Toader, T. Y. M. Chan, and S. John, "Photonic band gap architectures for holographic lithography," Phys. Rev. Lett. 92,043905 (2004). [CrossRef] [PubMed]
  18. C. K. Ullal, M. Maldovan, M. Wohlgemuth, and E. L. Thomas, "Triply periodic bicontinuous structures through interference lithography: a level-set approach," J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 20,948-954 (2003). [CrossRef] [PubMed]
  19. D. N. Sharp, A. J. Turberfield, and R. G. Denning, "Holographic photonic crystals with diamond symmetry," Phys. Rev. B 68,205102 (2003). [CrossRef]
  20. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions - new layer-by-layer periodic structures," Solid State Commun. 89,413-416 (1994). [CrossRef]
  21. H. M. Su, Y. C. Zhong, X. Wang, X. G. Zheng, J. F. Xu, and H. Z. Wang, "Effects of polarization on laser holography for microstructure fabrication," Phys. Rev. E 67,056619 (2003). [CrossRef]
  22. X. Y. Ao and S. L. He, "Two-stage design method for realization of photonic bandgap structures with desired symmetries by interference lithography," Opt. Express 12,978-983 (2004). [CrossRef] [PubMed]
  23. J. H. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, Ann Arbor, 1975).
  24. M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, Cambridge, Massachusetts, 1996).
  25. L. F. Shen, Z. Ye, and S. He, "Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm," Phys. Rev. B 68,035109 (2003). [CrossRef]
  26. A. Gondarenko, S. Preble, J. Robinson, L. Chen, H. Lipson, and M. Lipson, "Spontaneous emergence of periodic patterns in a biologically inspired simulation of photonic structures," Phys. Rev. Lett. 96,143904 (2006). [CrossRef] [PubMed]
  27. A. Hakansson and J. Sanchez-Dehesa, "Inverse designed photonic crystal de-multiplex waveguide coupler," Opt. Express 13,5440-5449 (2005). [CrossRef] [PubMed]
  28. C. T. Chan, S. Datta, K. M. Ho and C. M. Soukoulis, "A7 structure - a family of photonic crystals," Phys. Rev. B 50,1988-1991 (1994). [CrossRef]
  29. S. Huard, Polarization of Light (John Wiley & Sons, Incorporated, Chichester, 1997).
  30. J. J. Grefenstette, "Optimization of Control Parameters for Genetic Algorithms," IEEE Trans. Syst. Man Cybern. 16,122-128 (1986). [CrossRef]
  31. J. W. Rinne and P. Wiltzius (to be published).
  32. 32. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8,173-190 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited