OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 21 — Oct. 16, 2006
  • pp: 9955–9962

Voltage-controlled slow light in an integrated semiconductor structure with net gain

Filip Öhman, Kresten Yvind, and Jesper Mørk  »View Author Affiliations


Optics Express, Vol. 14, Issue 21, pp. 9955-9962 (2006)
http://dx.doi.org/10.1364/OE.14.009955


View Full Text Article

Enhanced HTML    Acrobat PDF (218 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the use of coherent population oscillations (CPO) to realize a monolithically integrated semiconductor device which allows voltage controlled tuning of the group velocity corresponding to a phase shift of up to 55 degrees at a frequency of 10 GHz. By combining sections of slow and fast light, corresponding to absorption and gain, we demonstrate control of both the slow-down factor and the signal amplitude, which is important for applications as true-time delay in microwave photonics. The physics of CPO is discussed in relation to electromagnetically induced transparency (EIT). In particular, we demonstrate and explain the possibility of achieving transparency when using the effect of CPO despite the fact that it relies on only a partial saturation of an absorption line.

© 2006 Optical Society of America

OCIS Codes
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(230.4320) Optical devices : Nonlinear optical devices
(250.5980) Optoelectronics : Semiconductor optical amplifiers

ToC Category:
Optical Devices

History
Original Manuscript: August 29, 2006
Manuscript Accepted: October 4, 2006
Published: October 16, 2006

Citation
Filip Öhman, Kresten Yvind, and Jesper Mørk, "Voltage-controlled slow light in an integrated semiconductor structure with net gain," Opt. Express 14, 9955-9962 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-21-9955


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 meters per second in an ultracold atomic gas," Nature 397, 594-598 (1999). [CrossRef]
  2. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90, 113903-1-4 (2003). [CrossRef]
  3. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow light propagation in a room-temperature solid," Science 301, 200-202 (2003). [CrossRef] [PubMed]
  4. P. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. Chang, and S. Chuang, "Slow light in semiconductor quantum wells," Opt. Lett. 29, 2291 (2004). [CrossRef] [PubMed]
  5. P. Palinginis, S. Crankshaw and F. Sedgwick, "Ultra-slow light (<200 m/s) propagation in a semiconductor nanostructure," Appl. Phys. Lett. 87, 171102 (2005). [CrossRef]
  6. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005). [CrossRef] [PubMed]
  7. K. Y. Song, M. G. Herráez, and L. Thévenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Opt. Express 13, 82-88 (2005). [CrossRef] [PubMed]
  8. D. Dahan and G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering," Opt. Express 13, 6234 (2005). [CrossRef] [PubMed]
  9. J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, "Slow light in a semiconductor waveguide at gigahertz frequencies," Opt. Express 13, 8136-8145 (2005). [CrossRef] [PubMed]
  10. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65 (2005). [CrossRef] [PubMed]
  11. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Modern Physics 77, 633 (2005). [CrossRef]
  12. J. C. Chang-Hasnain, P.-C. Ku, J. Kim, and S.-L. Chuang, "Variable optical buffer using slow-light in semiconductor nanostructures," Proc. IEEE 91, 1884 (2003). [CrossRef]
  13. A. Uskov, J. Mørk, and J. Mark, "Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning," IEEE J. Quantum Electron. 30, 1769 (1994). [CrossRef]
  14. M. O. Scully and M. S. Zuabairy, Quantum Optics, (Cambridge University Press, Cambride UK, 1997).
  15. R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, "Slow-light optical buffers: capabilities and fundamental limitations," J. Lightwave Technol. 23, 4046 (2005). [CrossRef]
  16. P. Jänes, J. Tidström, and L. Thylén, "Limits on optical pulse compression and delay bandwidth product in electromagnetically induced transparency media," J. Lightwave Technol. 23, 3893 (2005). [CrossRef]
  17. F. Öhman, K. Yvind and J. Mørk, "Slow light at high frequencies in an amplifying semiconductor waveguide," in Proceedings of Conference on Lasers and Electro-Optics, CMN1, Long Beach USA (2006).
  18. A. V. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, "Delay limit of slow light in semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 18, 731-733 (2006). [CrossRef]
  19. M. van der. Poel, J. Mørk, and J. M. Hvam, "Controllable delay of ultrashort optical pulses in a semiconductor quantum dot amplifier," Opt. Express 13, 8032-8037 (2005). [CrossRef]
  20. H. Su, P. Kondratko, and S. L. Chuang, "Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers," Opt. Express 13, 4800-4807 (2006). [CrossRef]
  21. Y. Chen, F. Öhman and J. Mørk, "Large Signal Modulation and Distortion in a Microwave Phase Shifter Based on Slow Light in a Semiconductor Waveguide." in Proceedings of Conference on Lasers and Electro-Optics, CMN2, Long Beach USA (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited