OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 21 — Oct. 16, 2006
  • pp: 9963–9970

Lateral shift in photon tunneling studied by the energy streamline method

Z. M. Zhang and B. J. Lee  »View Author Affiliations

Optics Express, Vol. 14, Issue 21, pp. 9963-9970 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (242 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The energy streamline method based on the Poynting vector of the coupled forward and backward waves is used to study photon tunneling phenomenon associated with the lateral shift of energy path. Each point on the energy streamline indicates the direction of the net energy flow of a plane wave. In the tunneling configuration, the light energy of the propagating waves is squeezed to the inside of a cone, whereas the streamlines of the coupled evanescent waves go through the barrier inside or outside the cone. This observation provides insight of the photon tunneling phenomenon. A relationship between the energy refraction angle and the incidence angle exists in the proximity limit and can be used to evaluate the lateral shift of the energy path. Furthermore, the energy streamline method can help gain deeper understanding of nanoscale radiation where photon tunneling plays an important role in the heat transfer enhancement.

© 2006 Optical Society of America

OCIS Codes
(240.0310) Optics at surfaces : Thin films
(240.6690) Optics at surfaces : Surface waves
(240.7040) Optics at surfaces : Tunneling

ToC Category:
Optics at Surfaces

Original Manuscript: June 30, 2006
Revised Manuscript: September 20, 2006
Manuscript Accepted: September 28, 2006
Published: October 16, 2006

Zhuomin Zhang and B.J. Lee, "Lateral shift in photon tunneling studied by the energy streamline method," Opt. Express 14, 9963-9970 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966−3969 (2000). [CrossRef] [PubMed]
  2. P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals: Imaging by flat lens using negative refraction," Nature 426, 404 (2003). [CrossRef] [PubMed]
  3. J. B. Brock, A. A. Houck, and I. L. Chuang, "Focusing inside negative index materials," Appl. Phys. Lett. 85, 2472−2474 (2004). [CrossRef]
  4. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, "Subwavelength resolution in a two-dimensional photonic-crystal-based superlens," Phys. Rev. Lett. 91, 207401 (2003). [CrossRef] [PubMed]
  5. Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, "Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies," Phys. Rev. Lett. 95, 153901 (2005). [CrossRef] [PubMed]
  6. A. Alù and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling, and transparency," IEEE Trans. Antennas Propag. 51, 2558−2571 (2003). [CrossRef]
  7. D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, "Submicron imaging with a planar silver lens," Appl. Phys. Lett. 84, 4403−4405 (2004). [CrossRef]
  8. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534−537 (2005). [CrossRef] [PubMed]
  9. E. E. Hall, "The penetration of totally reflected light into the rarer medium," Phys. Rev. Ser. I 15, 73−106 (1902).
  10. Z. M. Zhang and C. J. Fu, "Unusual photon tunneling in the presence of a layer with a negative refractive index," Appl. Phys. Lett. 80, 1097−1099 (2002). [CrossRef]
  11. A. M. Steinberg and R. Y. Chiao, "Tunneling delay times in one and two dimensions," Phys. Rev. A 49, 3283−3295 (1994). [CrossRef] [PubMed]
  12. J. Broe and O. Keller, "Quantum-well enhancement of the Goos-Hänchen shift for p-polarized beams in a two-prism configuration," J. Opt. Soc. Am. A 19, 1212−1222 (2002). [CrossRef]
  13. K.-Y. Kim, "Photon tunneling in composite layers of negative- and positive-index media," Phys. Rev. E 70, 047603 (2004). [CrossRef]
  14. Y.-Y. Chen, Z.-M. Huang, Q. Wang, C.-F. Li, and J.-L. Shi, "Photon tunnelling in one-dimensional metamaterial photonic crystals," J. Opt. A, Pure Appl. Opt. 7, 519−524 (2005). [CrossRef]
  15. H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, "Energy-flux pattern in the Goos-Hänchen effect," Phys. Rev. E 62, 7330-7339 (2000). [CrossRef]
  16. T. J. Cui, Z.-C. Hao, X. X. Yin, W. Hong, and J. A. Kong, "Study of lossy effects on the propagation of propagating and evanescent waves in left-handed materials," Phys. Lett. A 323, 484−494 (2004). [CrossRef]
  17. T. M. Grzegorczyk, C. D. Moss, J. Lu, X. Chen, J. Pacheco, and J. A. Kong, "Properties of left-handed metamaterials: Transmission, backward phase, negative refraction, and focusing," IEEE Trans. Microwave Theory Tech. 53, 2956−2967 (2005). [CrossRef]
  18. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  19. M. V. Bashevoy, V. A. Fedotov, and N. I. Zheludev, "Optical whirlpool on an absorbing metallic nanoparticle," Opt. Express 13, 8372−8379 (2005). [CrossRef] [PubMed]
  20. C.-F. Li, "Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects," Phys. Rev. Lett. 91, 133903 (2003). [CrossRef] [PubMed]
  21. M.-C. Yang and K. J. Webb, "Poynting vector analysis of a superlens," Opt. Lett. 30, 2382−2384 (2005). [CrossRef] [PubMed]
  22. S. L. Chuang, "Lateral shift of an optical beam due to leaky surface-plasomon excitations," J. Opt. Soc. Am. A 3, 593−599 (1986). [CrossRef]
  23. I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, "Giant Goos-Hänchen effect at the reflection from left-handed metamaterials," Appl. Phys. Lett 83, 2713−2715 (2003). [CrossRef]
  24. A. I. Volokitin and B. N. J. Persson, "Radiative heat transfer between nanostructures," Phys. Rev. B 63, 205404 (2001) [CrossRef]
  25. J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, "Enhanced radiative heat transfer at nanometric distance," Microscale Thermophys. Eng. 6, 209−222 (2002). [CrossRef]
  26. W. J. Choyke and E. D. Palik, "Silicon Carbide (SiC)," in Handbook of Optical Constants of Solids, (Academic Press, San Diego, CA, 1998).
  27. C. J. Fu and Z. M. Zhang, "Nanoscale radiation heat transfer for silicon at different doping levels," Int. J. Heat Mass Transfer 49, 1703−1718 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited