OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 22 — Oct. 30, 2006
  • pp: 10371–10376

Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber

Vahid G. Ta’eed, Libin Fu, Mark Pelusi, Martin Rochette, Ian C. M. Littler, David J. Moss, and Benjamin J. Eggleton  »View Author Affiliations

Optics Express, Vol. 14, Issue 22, pp. 10371-10376 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (228 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the first demonstration of all optical wavelength conversion in chalcogenide glass fiber including system penalty measurements at 10 Gb/s. Our device is based on singlemode As2Se3 chalcogenide glass fiber which has the highest Kerr nonlinearity (n2) of any fiber to date for which either advanced all optical signal processing functions or system penalty measurements have been demonstrated. We achieve wavelength conversion via cross phase modulation over a 10 nm wavelength range near 1550 nm with 7 ps pulses at 2.1 W peak pump power in 1 meter of fiber, achieving only 1.4 dB excess system penalty. Analysis and comparison of the fundamental fiber parameters, including nonlinear coefficient, two-photon absorption coefficient and dispersion parameter with other nonlinear glasses shows that As2Se3 based devices show considerable promise for radically integrated nonlinear signal processing devices.

© 2006 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(190.2620) Nonlinear optics : Harmonic generation and mixing

ToC Category:
Fourier Optics and Optical Signal Processing

Original Manuscript: August 22, 2006
Revised Manuscript: September 28, 2006
Manuscript Accepted: October 10, 2006
Published: October 30, 2006

Vahid G. Ta'eed, Libin Fu, Mark Pelusi, Martin Rochette, Ian C. Littler, David J. Moss, and Benjamin J. Eggleton, "Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber," Opt. Express 14, 10371-10376 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Zang, J. P. Jue, and B. Mukerjee, "A review of routing and wavelength assignment approaches for wavelength-routed Optical WDM Networks," in Optical Networks Magazine(2000), pp. 47-60.
  2. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spalter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, "Large Kerr effect in bulk Se-based chalcogenide glasses," Opt. Lett. 25, 254-256 (2000). [CrossRef]
  3. M. Asobe, "Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching," Opt. Fiber Technol. 3,142-148 (1997). [CrossRef]
  4. H. C. Nguyen, K. Finsterbusch, D. J. Moss, and B. J. Eggleton, "Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre," Electron. Lett. 42, 571-572 (2006). [CrossRef]
  5. L. B. Fu, M. Rochette, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005). [CrossRef] [PubMed]
  6. B. E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering," IEEE Photonics Technol. Lett. 12, 846-848 (2000). [CrossRef]
  7. I. D. Aggarwal and J. S. Sanghera, "Development and applications of chalcogenide glass optical fibers at NRL," J. Optoelectron. Adv. Mater. 4, 665-678 (2002).
  8. K. S. Abedin, "Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber," Opt. Express 13, 10266-10271 (2005). [CrossRef] [PubMed]
  9. P. Ohlen, B. E. Olsson, and D. J. Blumenthal, "Wavelength dependence and power requirements of a wavelength converter based on XPM in a dispersion-shifted optical fiber," IEEE Photon. Technol. Lett. 12, 522-524 (2000). [CrossRef]
  10. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Wavelength conversion of 160 Gbit/s OTDM signal using bismuth oxide-based ultra-high nonlinearity fibre," Electron. Lett. 41,918-919 (2005). [CrossRef]
  11. V. G. Ta'eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, "Integrated all-optical pulse regenerator in chalcogenide waveguides," Opt. Lett. 30, 2900-2902 (2005). [CrossRef] [PubMed]
  12. Y. K. Lize, E. C. Magi, V. G. Ta'eed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, "Microstructured optical fiber photonic wires with subwavelength core diameter," Opt. Express 12, 3209-3217 (2004). [CrossRef] [PubMed]
  13. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, "Chalcogenide holey fibres," Electron. Lett. 36, 1998-2000 (2000). [CrossRef]
  14. Y. L. Ruan, W. T. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, "Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching," Opt. Express 12, 5140-5145 (2004). [CrossRef] [PubMed]
  15. J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, "A tunable WDM wavelength converter based on cross-phase modulation effects in normal dispersion holey fiber," IEEE Photon. Technol. Lett. 15, 437-439 (2003). [CrossRef]
  16. G. Burdge, S. U. Alam, A. Grudinin, M. Durkin, M. Ibsen, I. Khrushchev, and I. White, "Ultrafast intensity modulation by Raman gain for all-optical in-fiber processing," Opt. Lett. 23, 606-608 (1998). [CrossRef]
  17. V. Mizrahi, K. W. Delong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, "2-Photon Absorption as a Limitation to All-Optical Switching," Opt. Lett. 14, 1140-1142 (1989). [CrossRef] [PubMed]
  18. M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, "Two-photon absorption effects on self-phase-modulation-based 2R optical regeneration," IEEE Photon. Technol. Lett. 18, 1185-1187 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited