OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 22 — Oct. 30, 2006
  • pp: 10588–10595

Imaging highly confined modes in sub-micron scale silicon waveguides using Transmission-based Near-field Scanning Optical Microscopy

Jacob T. Robinson, Stefan F. Preble, and Michal Lipson  »View Author Affiliations


Optics Express, Vol. 14, Issue 22, pp. 10588-10595 (2006)
http://dx.doi.org/10.1364/OE.14.010588


View Full Text Article

Enhanced HTML    Acrobat PDF (620 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a new technique for high resolution imaging of near field profiles in highly confining photonic structures. This technique, Transmission-based Near-field Scanning Optical Microscopy (TraNSOM), measures changes in transmission through a waveguide resulting from near field perturbation by a scanning metallic probe. Using this technique we compare different mode polarizations and measure a transverse optical decay length of λ/15 in sub-micron Silicon On Insulator (SOI) waveguides. These measurements compare well to theoretical results.

© 2006 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3060) Integrated optics : Infrared
(130.5990) Integrated optics : Semiconductors
(180.5810) Microscopy : Scanning microscopy
(290.2200) Scattering : Extinction

ToC Category:
Microscopy

History
Original Manuscript: September 14, 2006
Revised Manuscript: October 5, 2006
Manuscript Accepted: October 6, 2006
Published: October 30, 2006

Citation
Jacob T. Robinson, Stefan F. Preble, and Michal Lipson, "Imaging highly confined modes in sub-micron scale silicon waveguides using Transmission-based Near-field Scanning Optical Microscopy," Opt. Express 14, 10588-10595 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-22-10588


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Jalali,  et al., "Advances in silicon-on-insulator optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 938947 (1998).
  2. V.R. Almeida, C.A. Barrios, R.R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004). [CrossRef] [PubMed]
  3. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005). [CrossRef] [PubMed]
  4. A. Liu,  et al., "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004). [CrossRef] [PubMed]
  5. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip," Opt. Lett. 30, 2575-2577 (2005). [CrossRef] [PubMed]
  6. Y.A. Vlasov, M. O'Boyle, H.F. Hamann, and S.J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005). [CrossRef] [PubMed]
  7. Y. Okawachi,  et al., "All-optical slow-light on a photonic chip," Opt. Express 14, 2317-2322 (2006). [CrossRef] [PubMed]
  8. H. Rong,  et al., "Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide," App. Phys. Lett. 85, 2196-2198 (2004). [CrossRef]
  9. Q. Xu, V.R. Almeida, and M. Lipson, "Time-resolved study of raman gain in highly confined silicon-on-insulator waveguides," Opt. Express 12, (2004), [CrossRef] [PubMed]
  10. R.L. Espinola, J.I. Dadap, R.M. Osgood, Jr., S.J. McNab, and Y.A. Vlasov, "Raman amplification in ultrasmall silicon-on-insulator wire waveguides," Opt. Express 12, (2004) [CrossRef] [PubMed]
  11. R. Naisheng,  et al., "A continuous-wave raman silicon laser," Nature 433, 725-728 (2005). [CrossRef]
  12. O. Boyraz and B. Jalali, "Demonstration of directly modulated silicon raman laser," Opt. Express  13, 796 (2005). [CrossRef] [PubMed]
  13. M.A. Foster,  et al., "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006). [CrossRef] [PubMed]
  14. S. Bourzeix,  et al., "Near-field optical imaging of light propagation in semiconductor waveguide structures," App. Phys. Lett. 73, 1035-1037 (1998). [CrossRef]
  15. B. Hecht,  et al., "Scanning near-field optical microscopy with aperture probes: Fundamentals and applications," J. Chem. Phys. 112, 7761-7774 (2000). [CrossRef]
  16. C.D. Poweleit, D.H. Naghski, S.M. Lindsay, J.T. Boyd, and H.E. Jackson, "Near field scanning optical microscopy measurements of optical intensity distributions in semiconductor channel waveguides," App. Phys. Lett. 69, 3471-3473 (1996). [CrossRef]
  17. G.H. Vander Rhodes,  et al., "Measurement of internal spatial modes and local propagation properties in optical waveguides," App. Phys. Lett. 75, 2368-2370 (1999). [CrossRef]
  18. H.A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163 (1944). [CrossRef]
  19. R. Bachelot, P. Gleyzes, and A.C. Boccara, "Near-field optical microscope based on local perturbation of a diffraction spot," Opt. Lett. 20, 1924-1926 (1995). [CrossRef] [PubMed]
  20. Y. Inouye and S. Kawata, "Near-field scanning optical microscope with a metallic probe tip," Opt. Lett. 19, 159-161 (1994). [CrossRef] [PubMed]
  21. R. Bachelot,  et al., "Probing photonic and optoelectronic structures by apertureless scanning near-field optical microscopy," Microsc. Res. Tech. 64, 441-452 (2004). [CrossRef]
  22. L. Gomez,  et al., "Apertureless scanning near-field optical microscopy: A comparison between homodyne and heterodyne approaches," J. Opt. Soc. Am. B 23, 823-833 (2006). [CrossRef]
  23. I. Stefanon,  et al., "Heterodyne detection of guided waves using a scattering-type scanning near-field optical microscope," Opt. Express 13, (2005). [CrossRef] [PubMed]
  24. M.L.M. Balistreri, H. Gersen, J.P. Korterik, L. Kuipers, and N.F. van Hulst, "Tracking femtosecond laser pulses in space and time," Science 294, 1080-1082 (2001). [CrossRef] [PubMed]
  25. W.C.L. Hopman,  et al., "Nano-mechanical tuning and imaging of a photonic crystal micro-cavity resonance," Opt. Express 14, 8745-8752 (2006) [CrossRef] [PubMed]
  26. V.R. Almeida, R.R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003). [CrossRef] [PubMed]
  27. S.J. McNab, N. Moll, and Y.A. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express 11, 2927 (2003), [CrossRef] [PubMed]
  28. J.D. Jackson, Classical electrodynamics. 3rd ed (John Wiley & Sons, Inc., Hoboken, NJ,1999).
  29. H.C. Van de Hulst, Light scattering by small particles (Dover Publications. Inc., New York, NY,1981).
  30. A.F. Koenderink, M. Kafesaki, B.C. Buchler, and V. Sandoghdar, "Controlling the resonance of a photonic crystal microcavity by a near-field probe," Phys. Rev. Lett. 95, 153904-153901 (2005). [CrossRef] [PubMed]
  31. L. Aigony,  et al., "Polarization effects in apertureless scanning near-field optical microscopy: An experimental study," Opt. Lett. 24, 187-189 (1999). [CrossRef]
  32. M. Labardi,  et al., "Highly efficient second-harmonic nanosource for near-field optics and microscopy," Opt. Lett. 29, 62-64 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited