OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 22 — Oct. 30, 2006
  • pp: 10733–10739

Color separating with integrated photonic band-gap optical diodes: a numerical study

Jiun-Yeu Chen and Lien-Wen Chen  »View Author Affiliations


Optics Express, Vol. 14, Issue 22, pp. 10733-10739 (2006)
http://dx.doi.org/10.1364/OE.14.010733


View Full Text Article

Enhanced HTML    Acrobat PDF (212 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An optical diode (OD) and its application based on the photonic band-gap (PBG) property of chiral photonic crystals are presented. The OD is constructed from wave-plates and cholesteric liquid crystals with two different pitches. The component is polarization sensitive and exhibits passive anisotropic transmission analogous to the electronic diode. The non-reciprocal transmission of linearly polarized light at the different PBG regions is discussed. A new scheme of a color-separating system with the OD is proposed. The OD behavior constitutes the operational mechanism for a color splitter.

© 2006 Optical Society of America

OCIS Codes
(220.4830) Optical design and fabrication : Systems design
(230.3720) Optical devices : Liquid-crystal devices
(230.5440) Optical devices : Polarization-selective devices

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: August 10, 2006
Revised Manuscript: September 26, 2006
Manuscript Accepted: September 30, 2006
Published: October 30, 2006

Citation
Jiun-Yeu Chen and Lien-Wen Chen, "Color separating with integrated photonic bandgap optical diodes: a numerical study," Opt. Express 14, 10733-10739 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-22-10733


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J.-M. Lourtioz, H. Benisty, V. Berger, J.-M Gérard, D. Maystre, and A. Tchelnokov, Photonic Crystals: Towards Nanoscale Photonic Devices (Springer, Berlin, 2005).
  2. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1993).
  3. G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, "Color-tunable organic microcavity laser array using distributed feedback," Phys. Rev. Lett. 94, 063903 (2005). [CrossRef] [PubMed]
  4. Y. Semenova, Y. Panarin, G. Farrell, and S. Dovgalets, "Liquid crystal based optical switches," Mol. Cryst. Liq. Cryst. 413, 385-398 (2004). [CrossRef]
  5. M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, "Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor," Appl. Phys. Lett. 85, 2691-2693 (2004). [CrossRef]
  6. S.-T. Wu and D.-K. Yang, Reflective Liquid Crystal Displays (Wiley, New York, 2001).
  7. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, "The photonic band edge optical diode," J. Appl. Phys. 76, 2023-2026 (1994). [CrossRef]
  8. G. A. Vardanyan and A. A. Gevorgyan, "Wave nonreciprocity in inhomogeneous gyrotropic media and multilayer systems: II. multilayer systems," Opt. Spectrosc. 99, 992-999 (2005). [CrossRef]
  9. A. H. Gevorgyan, "Optical diode based on a highly anisotropic layer of a helical periodic medium subjected to a magnetic field," Tech. Phys. 47, 1008-1013 (2002). [CrossRef]
  10. M. W. Feise, I. V. Shadrivov, and Y. S. Kivshar, "Bistable diode action in left-handed periodic structures," Phys. Rev. E 71, 037602 (2005). [CrossRef]
  11. J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, "Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions," Nat. Mater. 4, 383-387 (2005). [CrossRef]
  12. M. H. Song, B. Park, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, "Simple electro-tunable optical diode using photonic and anisotropic liquid crystal films," Thin Solid Films 509, 49-52 (2006). [CrossRef]
  13. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, Bellingham, 2005). [CrossRef]
  14. J. Jin, The Finite Element Method in Electromagnetics (Wiley, New York, 2002).
  15. D. W. Berreman, "Optics in smoothly varying anisotropic planar structures: application to liquid-crystal twist cells," J. Opt. Soc. Am. 63, 1374-1380 (1973). [CrossRef]
  16. H. de Vries, "Rotatory power and other optical properties of certain liquid crystals," Acta Cryst. 4, 219-226 (1951). [CrossRef]
  17. R. Dreher and G. Meier, "Optical properties of cholesteric liquid crystals," Phys. Rev. A 8, 1616-1623 (1973). [CrossRef]
  18. M. W. McCall and A. Lakhtakia, "Development and assessment of coupled wave theory of axial propagation in thin-film helicoidal bianisotropic media. Part 1: reflectances and transmittances," J. Mod. Optics 47, 973-991 (2000). [CrossRef]
  19. I. C. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993).
  20. M. Tur, "Reflection at the boundary between glass and cholesteric liquid crystals," Mol. Cryst. Liq. Cryst. 29, 345-359 (1975). [CrossRef]
  21. Y. Tanaka, H. Takano, and T. Kurokawa, "Circular polarization resonator based on cholesteric liquid crystal," Jpn. J. Appl. Phys. 43, 1062-1067 (2004). [CrossRef]
  22. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, New York, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited