OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 22 — Oct. 30, 2006
  • pp: 10800–10810

Fiber-taper coupling to Whispering-Gallery modes of fluidic resonators embedded in a liquid medium

Mani Hossein-Zadeh and Kerry J. Vahala  »View Author Affiliations


Optics Express, Vol. 14, Issue 22, pp. 10800-10810 (2006)
http://dx.doi.org/10.1364/OE.14.010800


View Full Text Article

Enhanced HTML    Acrobat PDF (2154 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate efficient coupling to the optical Whispering-Gallery (WG) modes of a fluidic resonator consisting of a droplet embedded in a liquid medium. Unlike previous experiments the droplet is not levitated in an optical or electrostatic trap and free space coupling is replaced by phase-matched, waveguide coupling using a fiber-taper. We have observed critical coupling to fundamental WG modes of a 600 μm diameter water droplet at 980 nm. The experimental challenges towards making, stabilizing and coupling to the droplet resonators are addressed in this paper.

© 2006 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.5750) Optical devices : Resonators

ToC Category:
Optical Devices

History
Original Manuscript: August 28, 2006
Revised Manuscript: October 13, 2006
Manuscript Accepted: October 15, 2006
Published: October 30, 2006

Citation
Mani Hossein-Zadeh and Kerry J. Vahala, "Fiber-taper coupling to Whispering-Gallery modes of fluidic resonators embedded in a liquid medium," Opt. Express 14, 10800-10810 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-22-10800


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, "A microfluidic 2×2 optical switch," Appl. Phys. Lett. 85, 6119-6121 (2004). [CrossRef]
  2. D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chang, D. G. Nocera, and M. G. Bawendi, "A low-threshold high-efficiency microfluidic waveguide laser," J. Am. Chem. Soc. 25, 8952-8953 (2005). [CrossRef]
  3. D. V. Vezenov, B. T. Mayers, D. B. Wolfe and G. M. Whitesides, " Integrated fluidic lightsource for optofluidic applications," Appl. Phys. Lett. 86, 041104 (2005). [CrossRef]
  4. D. Psaltis, SR Quake, CH Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006) [CrossRef] [PubMed]
  5. A. Ashkin and J. M. Dziedzic, "Observation of resonances in the radiation pressure on dielectric sphere," Phys. Rev. Lett. 38, 1351-1354 (1977). [CrossRef]
  6. H. -M. Tzeng, K. F. Wall, M. B. Logng, and R. K. Chang, "Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances," Opt. Lett. 9, 499-501 (1984). [CrossRef] [PubMed]
  7. R. Symes, R. M. Sayer and J. P. Reid, "Cavity enhanced droplet spectroscopy: principles, perspectives and prospects," Phys. Chem. Chem. Phys. 6, 474-487 (2004). [CrossRef]
  8. S. -X Qian, J. B. Snow, and R. K. Chang, "Coherent Raman mixing and coherent anti-stokes Raman scattering from individual micrometer-size droplets," Opt. Lett. 10, 499-501 (1985). [CrossRef] [PubMed]
  9. M. D. Barnes, K. C. Ng, W. B. Whitten, and M. Ramsey, "detection of single Rhodamine 6G molecules in levitated microdroplets," Anal. Chem. 65, 2360-2365 (1993). [CrossRef]
  10. H. Azzouz, L. Alkhafadiji, S. Balslev, J. Johansson, N.A. Mortensen, S. Nilsson, A. Kristensen, "Levitated droplet dye laser," Opt. Express 14, pp. 4374-4379 (2006) [CrossRef] [PubMed]
  11. AA Darhuber, JP Valentino, SM Troian, S. Wagner, "Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays" J. Microelectromech. Syst. 12, 873-879 (2003) [CrossRef]
  12. JP Valentino, SM Troian, S Wagner, "Microfluidic detection and analysis by integration of thermocapillary actuation with a thin-film optical waveguide" Appl. Phys. Lett. 86, 184101 (2005). [CrossRef]
  13. DB Wolfe, DV Vezenov, BT Mayers, GM Whitesides, RS Conroy, MG Prentiss, "Diffusion-controlled optical elements for optofluidics" Appl. Phys Lett. 87, 181105 (2005) [CrossRef]
  14. R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, "Control and characterization of a single aerosol droplet in a single-beam gradient-force optical trap," Phys. Chem. Chem. Phys. 6, 4924-4927 (2004). [CrossRef]
  15. M. Tona, and M. Kimura, "Parallel-plate ion trap useful for optical studies of microparticles," Rev. of Sci. Instrum. 75, 2276-2279 (2004). [CrossRef]
  16. J. C. Night, G. Cheung, F. Jacques, and T.A. Birks, "Phase matched excitation of Whispering-Gallery mode resonances," Opt. Lett. 22, 1129-1131 (1997). [CrossRef]
  17. M. Cai, O. Painter, and KerryJ. Vahala, "Observation of critical coupling in a fiber-taper to silica-microsphere Whispering-Gallery mode system," Phys. Rev. Lett. 85, 74-77 (2000). [CrossRef] [PubMed]
  18. Note that the thickness of a liquid-liquid interface is usually characterized by an interfacial 90-10 width (the distance required for the surrounding liquid density to drop from 90% to 10% of its bulk value). Usually 90-10 width for a water-oil liquid is smaller than 1 nm and therefore the surface of a droplet in the cladding medium is extremely smooth. (see D. M. Mitrinovic et al., "X-ray reflectivity study of the water-hexane interface," J. Phys. Chem. B 13, 1779-1782, 1999) [CrossRef]
  19. G. M. Hale, and M. R. Querry, "Optical constants of water in the 200-nm to 200 ?m wavelength region," Appl. Opt. 12, 555-563 (1973). [CrossRef] [PubMed]
  20. Cargille Laboratories: Refractive index liquid Series AAA 1.3 (background liquid), and immersion liquid code OHZB n = 1.4 (optical liquid)
  21. B. E. Little, J. -P. Laine, and H. A. Haus, "Analytical theory of coupling from tapered fibers and half-blocks into microsphere resonators," J. Lightwave Technol. 17, 704-715 (1999). [CrossRef]
  22. D. K. Armani, T. J. Kippenberg, S. M. Spillane and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-929 (2003) [CrossRef] [PubMed]
  23. C. Yamahata, C. Lotto, E. Al-Assaf, M. A. M Gijs, "A PMMA valveless micropump using electromagnetic actuation," Microfluidics and Nanofluidics 1, 197-207 (2005) [CrossRef]
  24. S. Schiller, and R. L. Byer, "High-resolution spectroscopy of whispering-gallery modes in large dielectric spheres," Opt. Lett. 16, 1138-1140 (1991). [CrossRef] [PubMed]
  25. V. Vassiliev, V. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, A. V. Yarovitsky, "Narrow-line-width diode laser with a high-Q microsphere resonator," Opt. Commun. 158, 305-312 (1998). [CrossRef]
  26. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, "Shift of whispering-gallery modes in microspheres by protein absorption," Opt. Lett. 28, 272-274 (2003). [CrossRef] [PubMed]
  27. A. M. Armani, and K. J. Vahala, "Heavy water detection using ultra-high-Q microcavities," Opt. Lett. 31, 1896-1898 (2006). [CrossRef] [PubMed]
  28. F. Mugele and J. C. Baret, "Electrowetting: From basics to applications," J. Phys.-Cond. Matt. 17, 705-774 (2005) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited