OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 22 — Oct. 30, 2006
  • pp: 10851–10864

Multipole analysis of photonic crystal fibers with coated inclusions

Boris T. Kuhlmey, Karrnan Pathmanandavel, and Ross C. McPhedran  »View Author Affiliations


Optics Express, Vol. 14, Issue 22, pp. 10851-10864 (2006)
http://dx.doi.org/10.1364/OE.14.010851


View Full Text Article

Enhanced HTML    Acrobat PDF (589 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photonic crystal fibers (PCF) containing coated holes have recently been demonstrated experimentally, but haven’t been studied theoretically and numerically thus far. We extend the multipole formalism to take into account coated cylinders, and demonstrate its accuracy even with metallic coatings. We provide numerical tables for calibration of other numerical methods. Further, we study the guidance properties of several PCF with coated holes: we demonstrate that the confinement mechanisms of PCFs with high index coated holes depend on wavelength, and exhibit plasmonic resonances in metal coated PCFs.

© 2006 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Photonic Crystal Fibers

History
Original Manuscript: September 5, 2006
Revised Manuscript: October 19, 2006
Manuscript Accepted: October 21, 2006
Published: October 30, 2006

Citation
Boris T. Kuhlmey, Karrnan Pathmanandavel, and Ross C. McPhedran, "Multipole analysis of photonic crystal fibers with coated inclusions," Opt. Express 14, 10851-10864 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-22-10851


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, "All silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996). [CrossRef] [PubMed]
  2. P. Russell, "Photonic Crystal Fibers," Science 299, 358-362 (2003). [CrossRef] [PubMed]
  3. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2002), 466-468.
  4. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, "All-solid photonic bandgap fiber," Opt. Lett. 29, 2369-2371 (2004). [CrossRef] [PubMed]
  5. T. P. White, R. C. McPhedran, C. M. de Sterke, N. M. Litchinitser, and B. J. Eggleton, "Resonance and scattering in microstructured optical fibers," Opt. Lett. 27, 1977-1979 (2002). [CrossRef]
  6. J. Laegsgaard, "Gap formation and guided modes in photonic bandgap fibres with high-index rods," J. Opt. A 6, 798-804 (2004). [CrossRef]
  7. A. Moroz, "Photonic crystals of coated metallic spheres," Europhysics Letters 50, 466-472 (2000). [CrossRef]
  8. S. W. Wang, W. Lu, X. S. Chen, Z. F. Li, X. C. Shen, and W. J. Wen, "Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders," J. Appl. Phys. 93, 9401-9403 (2003). [CrossRef]
  9. V. Poborchii, T. Tada, T. Kanayama, and A. Moroz, "Silver-coated silicon pillar photonic crystals: Enhancement of a photonic band gap," Appl. Phys. Lett. 82, 508-510 (2003). [CrossRef]
  10. H. Kurt and D. S. Citrin, "Annular photonic crystals," Opt. Express 13, 10,316-10,326 (2005). [CrossRef]
  11. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006). [CrossRef] [PubMed]
  12. T. White, B. Kuhlmey, R. McPhedran, D. Maystre, G. Renversez, C. de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002). [CrossRef]
  13. V. Dangui, M. J. F. Digonnet, and G. S. Kino, "A fast and accurate numerical tool to model the modal properties of photonic-bandgap fibers," Opt. Express 14, 2979-2993 (2006). [CrossRef] [PubMed]
  14. F. Poli, M. Foroni, M. Bottacini, M. Fuochi, N. Burani, L. Rosa, A. Cucinotta, and S. Selleri, "Single-mode regime of square-lattice photonic crystal fibers," J. Opt. Soc. Am. A 22, 1655-1661 (2005). [CrossRef]
  15. M. Szpulak, G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbanczyk, J. Wojcik, M. Makara, J. Klimek, T. Nasilowski, F. Berghmans, and H. Thienpont, "Experimental and theoretical investigations of birefringent holey fibers with a triple defect," Appl. Opt. 44, 2652-2658 (2005). [CrossRef] [PubMed]
  16. A. B. Sotsky and L. I. Sotskaya, "Modes of capillary optical fibers," Opt. Commun. 230, 67-79 (2004). [CrossRef]
  17. A. Hochman and Y. Leviatan, "Calculation of confinement losses in photonic crystal fibers by use of a sourcemodel technique," J. Opt. Soc. Am. B 22, 474-480 (2005). [CrossRef]
  18. C. P. Yu and H. C. Chang, "Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers," Opt. Express 12, 6165-6177 (2004). [CrossRef] [PubMed]
  19. H. Cheng, W. Y. Crutchfield, M. Doery, and L. Greengard, "Fast, accurate integral equation methods for the analysis of photonic crystal fibers - I: Theory," Opt. Express 12, 3791-3805 (2004). [CrossRef] [PubMed]
  20. S. P. Guo, F. Wu, S. Albin, H. Tai, and R. S. Rogowski, "Loss and dispersion analysis of microstructured fibers by finite-difference method," Opt. Express 12, 3341-3352 (2004). [CrossRef] [PubMed]
  21. H. P. Uranus and H. Hoekstra, "Modelling of microstructured waveguides using a finite-element-based vectorial mode solver with transparent boundary conditions," Opt. Express 12, 2795-2809 (2004). [CrossRef] [PubMed]
  22. V. P. Minkovich, A. V. Kir’yanov, A. B. Sotsky, and L. I. Sotskaya, "Large-mode-area holey fibers with a few air channels in cladding: modeling and experimental investigation of the modal properties," J. Opt. Soc. Am. B 21, 1161-1169 (2004). [CrossRef]
  23. P. Kowalczyk, M. Wiktor, and M. Mrozowski, "Efficient finite difference analysis of microstructured optical fibers," Opt. Express 13, 10,349-10,359 (2005). [CrossRef]
  24. P. Boyer, G. Renversez, E. Popov, and M. Neviere, "A new differential method applied to the study of arbitrary cross section microstructured optical fibers," Opt. Quantum Electron. 38, 217-230 (2006). [CrossRef]
  25. L. Li, "Use of Fourier series in the analysis of discontinuous periodic structures," J. Opt. Soc. Am. A 13, 1870-1876 (1996). [CrossRef]
  26. M. Nevière and E. Popov, Light propagation in Periodic Media - Differential theory and design (Marcel Dekker, Inc., New York, Basel, 2003).
  27. H. A. Yousif, R. E. Mattis, and K. Kozminski, "Light scattering at oblique incidence on two coaxial cylinders," Appl. Opt. 33, 4013-4024 (1994). [CrossRef] [PubMed]
  28. A. Snyder and J. Love, Optical waveguide theory (Chapman & Hall, London, 1996).
  29. S. Campbell, R. C. McPhedran, C.M. de Sterke, and L. C. Botten, "Differential multipole method for microstructured optical fibers," J. Opt. Soc. Am. B 21, 1919-1928 (2004). [CrossRef]
  30. B. Kuhlmey, T. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am. B 19, 2331-2340 (2002). [CrossRef]
  31. B. T. Kuhlmey, "Theoretical and Numerical Investigation of the Physics of Microstructured Optical Fibres," Ph.D. thesis, University of Sydney and Université Aix-Marseille III (2003). http://setis.library.usyd.edu.au/adt/public html/adt-NU/public/adt-NU20040715.171105/.
  32. E. D. Palik, ed., Handbook of optical constants of solids (Academic Press, 1985).
  33. J. M. Stone, G. J. Pearce, F. Luan, T. A. Birks, J. C. Knight, A. K. George, and D. M. Bird, "An improved photonic bandgap fiber based on an array of rings," Opt. Express 14, 6291-6296 (2006). [CrossRef] [PubMed]
  34. J. C. Knight, T. A. Birks, and S. J. Russell, "Properties of photonic crystal fiber and the effective index model," J. Opt. Soc. Am. A 15, 746-750 (1998). [CrossRef]
  35. G. W. Milton, The Theory of Composites (Cambridge University Press, 2002). [CrossRef]
  36. P. Steinvurzel, B. T. Kuhlmey, T. P. White, M. J. Steel, C. M. de Sterke, and B. J. Eggleton, "Long wavelength anti-resonant guidance in high index inclusion microstructured fibers," Opt. Express 12, 5424-5433 (2004). [CrossRef] [PubMed]
  37. G. Renversez, P. Boyer, and A. Sagrini, "Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling," Opt. Express 14, 5682-5687 (2006). [CrossRef] [PubMed]
  38. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003). [CrossRef] [PubMed]
  39. J.-L. A. F. Gérôme and J.-M. Blondy, "Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber," Opt. Lett. 29, 2725-2727 (2004). [CrossRef] [PubMed]
  40. A. Huttunen and P. Törmä, "Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area," Opt. Express 13, 627-635 (2005). [CrossRef] [PubMed]
  41. T. White, R. McPhedran, C. de Sterke, andM. Steel, "Confinement losses in microstructured optical fibres," Opt. Lett. 26, 1660-1662 (2001). [CrossRef]
  42. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited