OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 22 — Oct. 30, 2006
  • pp: 10887–10897

Localized propagation modes guided by shear discontinuities in photonic crystals

Kehan Tian, George Barbastathis, and John Hong  »View Author Affiliations


Optics Express, Vol. 14, Issue 22, pp. 10887-10897 (2006)
http://dx.doi.org/10.1364/OE.14.010887


View Full Text Article

Enhanced HTML    Acrobat PDF (173 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and analyze shear discontinuities as a new type of defect in photonic crystals. This defect can support guided modes with minimum group velocity dispersion (GVD) and maximum bandwidth, provided that the shear shift equals half the lattice constant. A mode gap emerges when the shear shift is different than half the lattice constant. The shear shift can be used to tune the bandwidth, group velocity, and group velocity dispersion (GVD) of the guided mode. The necessary condition for the existence of guided modes along the shear plane is discussed.

© 2006 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Photonic Crystals

History
Original Manuscript: April 28, 2006
Revised Manuscript: June 20, 2006
Manuscript Accepted: June 26, 2006
Published: October 30, 2006

Citation
Kehan Tian, George Barbastathis, and John Hong, "Localized propagation modes guided by shear discontinuities in photonic crystals," Opt. Express 14, 10887-10897 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-22-10887


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals (Princeton University Press, 1995).
  2. K. M. Ho, C. T. Chan, and C. M. Soulouis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65,3152 (1990). [CrossRef] [PubMed]
  3. E. Yablonovitch, T. J. Gmiter, and L. M. Leung, "Photonic band structure: the face-certered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67,2295 (1991). [CrossRef] [PubMed]
  4. R. D. Meade, A. M. Rappe, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B,  48,8434 (1993). [CrossRef]
  5. P. Yeh, Optical waves in layered media (Wiley, New York, 1988).
  6. R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, "Novel applications of photonic band gap materials: low-loss bends and high Q cavlties," J. Appl. Phys. 75,4753 (1994). [CrossRef]
  7. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. B 58,4809 (1998). [CrossRef]
  8. S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Guided modes in photonic crystal slabs," Phys. Rev. B 60,5751 (1999). [CrossRef]
  9. S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, "Experimental demostration of guiding and bending of electromagnetic waves in a photonic crystal," Science 282,274 (1998). [CrossRef] [PubMed]
  10. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremly large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87,253902 (2001). [CrossRef] [PubMed]
  11. W. Tung and S. Fan, "Creating large bandwidth line defects by embedding dielectric waveguides into photonic crystal slabs," Appl. Phys. Lett. 81,3915 (2002). [CrossRef]
  12. A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, "Mode dispersion in biperiodic photonic crystal waveguides," Phys. Rev. B 68,233102 (2003). [CrossRef]
  13. T. Sondergaard and A. Lavrinenko, "Large-bandwidth planar photonic crystal waveguides," Opt. Commun. 203,263 (2002). [CrossRef]
  14. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299,682 (2003). [CrossRef] [PubMed]
  15. A. Mekis, S. Fan, and J. D. Joannopoulos, "Bound states in photonic crystal waveguides and waveguide bends," Phys. Rev. B 58,4809 (1998). [CrossRef]
  16. H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1984).
  17. P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency," Phys. Rev. B 54,7837 (1996). [CrossRef]
  18. A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, "Guiding mechanisms in dielectric-core photonic-crystal optical waveguides," Phys. Rev. B 64,033308 (2001). [CrossRef]
  19. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397,594 (1999). [CrossRef]
  20. M. D. Stenner, D. J. Gauthies, and M. A. Neifeld, "The speed of information in a "fast-light" optical medium," Nature (London) 425695 (2003). [CrossRef]
  21. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow light propagation in a room temperature solid," Science 301,200 (2003). [CrossRef] [PubMed]
  22. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature (London) 438,65 (2005). [CrossRef]
  23. W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Observation of surface photons on periodic dielectric arrays," Opt. Lett. 18,528 (1993). [CrossRef] [PubMed]
  24. E. Yablonovitch, T. J. Gmiter, R. M. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, "Donor and acceptor modes in photonic band structure," Phys. Rev. Lett. 67,3380 (1991). [CrossRef] [PubMed]
  25. K. Tian, G. Babarstathis, and J. Hong, "Localized propagation modes guided by shear discontinuities in photonic crystals" in Frontiers in Optics/Laser Science conferences, (Optical Society of America, Tucson, Arizona, Oct. 2005), Paper FWI4.
  26. K. Tian, G. Babarstathis, and J. Hong, "Tunable group velocity in a coupled-resonator optical waveguide (CROW) formed by shear discontinuities in a photonic crystal," under preparation.
  27. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24,711 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (1261 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited