OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 23 — Nov. 13, 2006
  • pp: 10976–10983

Miniature fluorescence detector for single atom observation on a microchip

Akifumi Takamizawa, Tilo Steinmetz, Rémi Delhuille, Theodor W. Hänsch, and Jakob Reichel  »View Author Affiliations

Optics Express, Vol. 14, Issue 23, pp. 10976-10983 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (186 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We explore the feasibility of single atom detection on an atom chip by using a tiny fluorescence detector mounted on the chip. Resonant fluorescence from a trapped ultracold atom will be collected with a miniature aspheric lens and taken out of a vacuum chamber through a fiber. During detection, the atom can be held at the focus of the detector with a dipole trapping beam introduced through the same fiber. We have experimentally determined the optical performance of such a detector, taking into account effects such as stray light from the dipole trapping beam and chromatic aberration. The collection efficiency for isotropically emitted radiation is experimentally obtained to be 2.5%. From this, it is estimated that the fluorescence emitted from a single Rb atom will produce a photon count rate of 4.7×104 Hz, which is much larger than the shot noise limited background fluctuations.

© 2006 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(040.1880) Detectors : Detection
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(140.3320) Lasers and laser optics : Laser cooling

ToC Category:
Atomic and Molecular Physics

Original Manuscript: June 23, 2006
Revised Manuscript: September 7, 2006
Manuscript Accepted: September 11, 2006
Published: November 13, 2006

Akifumi Takamizawa, Tilo Steinmetz, Rémi Delhuille, Theodor W. Hänsch, and Jakob Reichel, "Miniature fluorescence detector for single atom observation on a microchip," Opt. Express 14, 10976-10983 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Reichel, "Microchip traps and Bose-Einstein condensation," Appl. Phys. B 74, 469-487 (2002). [CrossRef]
  2. R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, "Microscopic atom optics: From wires to an atom chip," Adv. At. Mol. Phys. 48, 263 (2002). [CrossRef]
  3. W. Hänsel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, "Bose-Einstein condensation on a microelectronic chip," Nature 413, 498-501 (2001). [CrossRef] [PubMed]
  4. H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, "Bose-Einstein condensation in a surface microtrap," Phys. Rev. Lett. 87, 230401 (2001). [CrossRef] [PubMed]
  5. P. Treutlein, P. Hommelhoff, T. Steinmetz, T. W. Hänsch, and J. Reichel, "Coherence in microchip traps," Phys. Rev. Lett. 92, 203005 (2004). [CrossRef] [PubMed]
  6. T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, "Quantum gates with neutral atoms: Controlling collisional interactions in time-dependent traps," Phys. Rev. A 61, 022304 (2000). [CrossRef]
  7. P. Zoller (ed.), "ERA-Pilot QIST Strategic Report," http://qist.ect.it (2005).
  8. N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, "Sub-poissonian loading of single atoms in a microscopic dipole trap," Nature 411, 1024-1027 (2001). [CrossRef] [PubMed]
  9. S. Kuhr, W. Alt, D. Schrader, M. Muller, V. Gomer, and D. Meschede, "Deterministic delivery of a single atom," Science 293, 278-280 (2001). [CrossRef] [PubMed]
  10. J. Ye, D. W. Vernooy, and H. J. Kimble, "Trapping of single atoms in cavity QED," Phys. Rev. Lett. 83, 4987 (1999). [CrossRef]
  11. P. Münstermann, T. Fischer, P. Maunz, P. W. H. Pinkse, and G. Rempe, "Dynamics of single-atom motion observed in a high-finesse cavity," Phys. Rev. Lett. 82, 3791-3794 (1999). [CrossRef]
  12. G. Birkl, F. B. J. Buchkremer, R. Dumke, and W. Ertmer, "Atom optics with microfabricated optical elements," Opt. Commum. 191, 67-81 (2001). [CrossRef]
  13. S. Eriksson, M. Trupke, H. F. Powell, D. Sahagun, C. D. J. Sinclair, E. A. Curtis, B. E. Sauer, E. A. Hinds, Z. Moktadir, C. O. Gollasch, and M. Kraft, "Integrated optical components on atom chips," Eur. Phys. J. D 35, 135-139 (2005). [CrossRef]
  14. R. Long, T. Steinmetz, P. Hommelhoff, W. Hänsel, T. W. Hänsch, and J. Reichel, "Magnetic microchip traps and single-atom detection," Philos. Trans. R. Soc. London, Ser. A 361, 1375-1389 (2003). [CrossRef]
  15. D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, "Guiding Neutral Atoms Around Curves with Lithographically Patterned Current-Carrying Wires," Phys. Rev. Lett. 83, 5194-5197 (1999). [CrossRef]
  16. N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndic, R. M. Westervelt, and M. Prentiss, "Guiding neutral atoms on a chip," Phys. Rev. Lett. 84, 1124-1127 (2000). [CrossRef] [PubMed]
  17. W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hänsch, "Magnetic conveyer belt for transporting and merging trapped atom clouds," Phys. Rev. Lett. 86, 608-611 (2001). [CrossRef] [PubMed]
  18. R. Long, T. Rom, W. Hänsel, T. W. Hänsch, and J. Reichel, "Long distance magnetic conveyor for precise positioning of ultracold atoms," Eur. Phys. J. D 35, 125-133 (2005). [CrossRef]
  19. H. Urey, "Spot size, depth-of-focus, and diffraction ring intensity formulas for truncated Gaussian beams," Appl. Opt. 43, 620-625 (2004). [CrossRef] [PubMed]
  20. B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, "Controlled single-photon emission from a single trapped two-level atom," Science 309, 454-456 (2005). [CrossRef] [PubMed]
  21. J. Volz, M. Weber, D. Schlenk, W. Rosenfeld, J. Vrana, K. Saucke, C. Kurtsiefer, and H. Weinfurter, "Observation of entanglement of a single photon with a trapped atom," Phys. Rev. Lett. 96, 030404 (2006). [CrossRef] [PubMed]
  22. R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, in Advances in Atomic, Molecular, and Optical Physics, B. Bederson and H.Walther, eds., (Academic Press, San Diego, 2000), Vol. 42, pp 95-170.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited