OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 23 — Nov. 13, 2006
  • pp: 11002–11011

Design of multichannel DWDM fiber Bragg grating filters by Lagrange multiplier constrained optimization

Cheng-Ling Lee, Ray-Kuang Lee, and Yee-Mou Kao  »View Author Affiliations

Optics Express, Vol. 14, Issue 23, pp. 11002-11011 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (139 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the synthesis of multi-channel fiber Bragg grating (MCFBG) filters for dense wavelength-division-multiplexing (DWDM) application by using a simple optimization approach based on a Lagrange multiplier optimization (LMO) method. We demonstrate for the first time that the LMO method can be used to constrain various parameters of the designed MCFBG filters for practical application demands and fabrication requirements. The designed filters have a number of merits, i.e., flat-top and low dispersion spectral response as well as single stage. Above all, the maximum amplitude of the index modulation profiles of the designed MCFBGs can be substantially reduced under the applied constrained condition. The simulation results demonstrate that the LMO algorithm can provide a potential alternative for complex fiber grating filter design problems.

© 2006 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(060.2340) Fiber optics and optical communications : Fiber optics components
(230.1480) Optical devices : Bragg reflectors

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 28, 2006
Revised Manuscript: October 23, 2006
Manuscript Accepted: October 26, 2006
Published: November 13, 2006

Cheng-Ling Lee, Ray-Kuang Lee, and Yee-Mou Kao, "Design of multichannel DWDM fiber Bragg grating filters by Lagrange multiplier constrained optimization," Opt. Express 14, 11002-11011 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Erdogan, "Fiber grating spectra," J. of Lightwave Technol. 15, 1277-1294 (1997). [CrossRef]
  2. M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, "Sincsampled fiber Bragg gratings for identical multiple wavelength operation," IEEE Photon. Technol. Lett. 10, 842-844 (1998). [CrossRef]
  3. X.-F. Chen, Y. Luo, C.-C. Fan, and S.-Z. Xie, "Analytical expression of sampled Bragg gratings with chirp in the sampling period and its application in dispersion management design in a WDM system," IEEE Photon. Technol. Lett. 12, 1013-1015 (2000). [CrossRef]
  4. W. H. Loh, F. Q. Zhou, and J. J. Pan, "Sampled fiber grating based dispersions lope compensation," IEEE Photon. Technol. Lett. 11, 1280-1282 (1999). [CrossRef]
  5. H. Lee and G. P. Agrawal, "Purely phase-sampled fiber Bragg gratings for broad-band dispersion and dispersion slope compensation," IEEE Photon. Technol. Lett. 15, 1091-1093 (2003). [CrossRef]
  6. Q. Wu, C. Yu, K. Wang, X. Wang, Z. Yu, H. P. Chan, and P. L. Chu, "New sampling-based design of simultaneous compensation of both dispersion and dispersion slope for multichannel fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 381-383 (2005). [CrossRef]
  7. A. V. Buryak, K. Y. Kolossovski, and D. Y. Stepanov, "Optimization of refractive index sampling for multichannel fiber Bragg gratings," IEEE J. Quantum Electron. 39, 91-98 (2003). [CrossRef]
  8. K. Y. Kolossovski, R. A. Sammut, A. V. Buryak, and D. Y. Stepanov, "Three-step design optimization for multi-channel fiber Bragg gratings," Opt. Express 11, 1029-1038, (2003). [CrossRef] [PubMed]
  9. S. Baskar, P. N. Suganthan, N. Q. Ngo, A. Alphones, and R. T. Zheng, "Design of triangular FBG filter for sensor applications using covariance matrix adapted evolution algorithm," Opt. Commun. 260,716-722 (2006). [CrossRef]
  10. S. Baskar, R. T. Zheng, A. Alphones, N. Q. Ngo, and P. N. Suganthan, "Particle swarm optimization for the design of low-dispersion Fiber Bragg Gratings," IEEE Photon. Technol. Lett. 17, 615-617 (2005). [CrossRef]
  11. R. Feced, M. N. Zervas, and M. A. Muriel, "An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings," IEEE J. Quantum Electron. 29,1824-1834 (1993).
  12. J. Skaar, L. Wang, and T. Erdogen, "On the synthesis of fiber Bragg grating by layer peeling," IEEE J. Quantum Electron. 37, 165-173 (2001). [CrossRef]
  13. H. Li and Y. Sheng, "Direct design of multichannel fiber Bragg grating with discrete layer-peeling algorithm," IEEE Photon. Technol. Lett. 15, 1252-1254 (2003). [CrossRef]
  14. Q. Wu, P. L. Chu, and H. P. Chan, "General design approach to Multichannel Fiber Bragg Grating," J. of Lightwave Technol. 24, 1571-1580 (2006). [CrossRef]
  15. N. Wang and H. Rabitz, "Optimal control of pulse amplification without inversion," Phys. Rev. A 53, 1879-1885 (1996). [CrossRef] [PubMed]
  16. N. Wang and H. Rabitz, "Optimal control of population transfer in an optical dense medium," J. Chem. Phys. 104, 1173-1178 (1996). [CrossRef]
  17. R. Buffa, "Optimal control of population transfer through the continuum," Opt. Commun. 153, 240-244 (1998). [CrossRef]
  18. F. I. Lewis, Optimal Control, (Wiley, New York, 1986).
  19. S. A. Rice and M. Zhao, Optimal Control of Molecular Dynamics, (Wiley, New York, (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited