OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 23 — Nov. 13, 2006
  • pp: 11071–11076

Single-frequency master-oscillator photonic crystal fiber amplifier with 148 W output power

Matthias Hildebrandt, Maik Frede, Patrick Kwee, Benno Willke, and Dietmar Kracht  »View Author Affiliations

Optics Express, Vol. 14, Issue 23, pp. 11071-11076 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (226 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a high-power ytterbium doped photonic crystal fiber amplifier using a single-frequency Nd:YAG non-planar ring oscillator seed source. With a large-mode-area photonic crystal fiber, operation below the threshold of stimulated Brillouin scattering is demonstrated with up to 148 W of continuous-wave output power and a slope efficiency of 75%. At maximum output power the amplified spontaneous emission was suppressed by more than 40 dB and the polarization extinction ratio was better than 22 dB. In order to investigate the overlap of the photonic crystal fiber transverse-mode with a Gaussian fundamental mode, sensitive beam quality measurements with a Fabry-Perot ring-cavity are presented.

© 2006 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(140.3280) Lasers and laser optics : Laser amplifiers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 20, 2006
Revised Manuscript: October 30, 2006
Manuscript Accepted: October 30, 2006
Published: November 13, 2006

Matthias Hildebrandt, Maik Frede, Patrick Kwee, Benno Willke, and Dietmar Kracht, "Single-frequency master-oscillator photonic crystal fiber amplifier with 148 W output power," Opt. Express 14, 11071-11076 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000). [CrossRef]
  3. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, "Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier," Opt. Express 12, 1313-1319 (2004). [CrossRef] [PubMed]
  4. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F.  Salin, "Extended single-mode photonic crystal fiber lasers," Opt. Express 14, 2715-2720 (2006). [CrossRef] [PubMed]
  5. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995), Chap. 9.
  6. I. Zawischa, K. Plamann, C. Fallnich, H. Welling, H. Zellmer, and A. Tünnermann, "All-solid-state neodymium-based single-frequency master-oscillator fiber power-amplifier system emitting 5.5 W of radiation at 1064 nm," Opt. Lett. 24, 469-471 (1999). [CrossRef]
  7. T. J. Kane and R. L. Byer, "Monolithic, unidirectional single-mode Nd:YAG ring laser," Opt. Lett. 10,65-67 (1985). [CrossRef] [PubMed]
  8. M. Frede, R. Wilhelm, D. Kracht, C. Fallnich, F. Seifert, B. Willke, "195 W Injection-Locked Single-Frequency Laser System," in Conference on Lasers and Electro-Optics, (Optical Society of America, San Jose, California, 2005), CMA1.
  9. S. J. Augst, T. Y. Fan, A. Sanchez, "Coherent beam combining and phase noise measurements of ytterbium fiber amplifiers," Opt. Lett. 29, 474-476 (2004). [CrossRef] [PubMed]
  10. A. Liem, J. Limpert, H. Zellmer, and A. Tünnermann, "100-W single-frequency master-oscillator fiber power amplifier," Opt. Lett. 28,1537-1539 (2003). [CrossRef] [PubMed]
  11. Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R.  Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, "Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power," Opt. Lett. 30,459-461 (2005). [CrossRef] [PubMed]
  12. J. P. Koplow, L. Goldberg, R. P. Moeller, and D. A. V. Kliner, "Single-mode operation of a coiled multimode fiber," Opt. Lett. 25, 442-444 (2000). [CrossRef]
  13. N. A. Brilliant, "Stimulated Brillouin scattering in a dual-clad fiber amplifier," J. Opt. Soc. Am. B 19, 2551-2557 (2002). [CrossRef]
  14. A. Bjarklev, J. Broeng, S. E. Barkou, E. Knudsen, T. S. Sønergaard, T. W. Berg, and M. G. Dyndgaard, "Polarization properties of honeycomb-structured photonic bandgap fibres," J. Opt. A: Pure Appl. Opt. 2, 584-588 (2000). [CrossRef]
  15. A. E. Siegman, "New developments in laser resonators," in Optical Resonators, D. A. Holmes, ed., Proc. SPIE 1224, 2-14 (1990).
  16. A. Mafi, and J. V. Moloney, "Beam quality of Photonic-Crystal Fibers," J. Lightwave Technol. 23, 2267-2270 (2005). [CrossRef]
  17. B. Willke, N. Uehara, E. K. Gustafson, R. L. Byer, P. J. King, S. U. Seel, and R. L. Savage, "Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry-Perot ring-cavity premode cleaner," Opt. Lett. 23, 1704-1706 (1998). [CrossRef]
  18. P. Weßels, and C. Fallnich, "Highly sensitive beam quality measurements on large-mode-area fiber amplifiers," Opt. Express 11, 3346-3351 (2003). [PubMed]
  19. S. Hädrich, T. Schreiber, T. Pertsch, J. Limpert, T. Peschel, R. Eberhardt, and A. Tünnermann, "Thermo-optical behavior of rare-earth-doped low-NA fibers in high power operation," Opt. Express 14, 6091-6097 (2006). [CrossRef] [PubMed]
  20. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienna, A. Petersson, and C. Jakobsen, "High-power air-clad large-mode-area photonic crystal fiber laser," Opt. Express  11, 818-823 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited