OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 23 — Nov. 13, 2006
  • pp: 11088–11102

Microscopic particle discrimination using spatially-resolved Fourier-holographic light scattering angular spectroscopy

Timothy R. Hillman, Sergey A. Alexandrov, Thomas Gutzler, and David D. Sampson  »View Author Affiliations

Optics Express, Vol. 14, Issue 23, pp. 11088-11102 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (4140 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We utilize Fourier-holographic light scattering angular spectroscopy to record the spatially resolved complex angular scattering spectra of samples over wide fields of view in a single or few image captures. Without resolving individual scatterers, we are able to generate spatially-resolved particle size maps for samples composed of spherical scatterers, by comparing generated spectra with Mie-theory predictions. We present a theoretical discussion of the fundamental principles of our technique and, in addition to the sphere samples, apply it experimentally to a biological sample which comprises red blood cells. Our method could possibly represent an efficient alternative to the time-consuming and laborious conventional procedure in light microscopy of image tiling and inspection, for the characterization of microscopic morphology over wide fields of view.

© 2006 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(090.0090) Holography : Holography
(100.2000) Image processing : Digital image processing
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.1650) Medical optics and biotechnology : Coherence imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Fourier Optics and Optical Signal Processing

Original Manuscript: September 12, 2006
Revised Manuscript: October 30, 2006
Manuscript Accepted: October 31, 2006
Published: November 13, 2006

Virtual Issues
Vol. 1, Iss. 12 Virtual Journal for Biomedical Optics

Timothy R. Hillman, Sergey A. Alexandrov, Thomas Gutzler, and David D. Sampson, "Microscopic particle discrimination using spatially-resolved Fourier-holographic light scattering angular spectroscopy," Opt. Express 14, 11088-11102 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Sluder and D. E. Wolf, eds., Digital Microscopy: a Second Edition of Video Microscopy (Elsevier Academic Press, Amsterdam, 2003).
  2. S. A. Alexandrov, T. R. Hillman, and D. D. Sampson, "Spatially resolved Fourier holographic light scattering angular spectroscopy," Opt. Lett. 30,3305-3307 (2005). [CrossRef]
  3. S. A. Alexandrov, T. R. Hillman, T. Gutzler, M. B. Same, and D. D. Sampson, "Particle sizing with spatiallyresolved Fourier-holographic light scattering angular spectroscopy," in BiOS 2006:Multimodal Biomedical Imaging, F. S. Azar, D. N. Metaxas, eds., Proc. SPIE 6081, 608104 (2006). [CrossRef]
  4. L. Yaroslavsky, Principles of Digital Holography (Kluwer Academic Publishers, Boston, 2003).
  5. E. Cuche, F. Bevilacqua, and C. Depeursinge, "Digital holography for quantitative phase-contrast imaging," Opt. Lett. 24,291-293 (1999). [CrossRef]
  6. E. Cuche, P. Marquet, and C. Depeursinge, "Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms," Appl. Opt. 38,6994-7001 (1999). [CrossRef]
  7. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, "Fourier phase microscopy for investigation of biological structures and dynamics," Opt. Lett. 29,2503-2505 (2004). [CrossRef] [PubMed]
  8. P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, "Digital holographic microscopy: a non-invasive contrast imaging technique allowing quantitative visualisation of living cells with subwavelength axial accuracy," Opt. Lett. 30,468-470 (2005). [CrossRef] [PubMed]
  9. M. Gustafsson and M. Sebesta, "Refractometry of microscopic objects with digital holography," Appl. Opt. 43,4796-4801 (2004). [CrossRef] [PubMed]
  10. M. Sebesta and M Gustafsson, "Object characterization with refractometric digital Fourier holography," Opt. Lett. 30,471-473 (2005). [CrossRef] [PubMed]
  11. B. Javidi, I. Moon, S. Yeom, and E. Carapezza, "Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography," Opt. Express 13,4492-4506 (2005). [CrossRef] [PubMed]
  12. V. Mico, Z. Zalevsky, and J. Garcia, "Superresolution optical system by common-path interferometry," Opt. Express 14,5168-5177 (2006). [CrossRef] [PubMed]
  13. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, "Synthetic aperture Fourier holographic optical microscopy," Phys. Rev. Lett. 97,168102 (2006). [CrossRef] [PubMed]
  14. J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, "Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures," J. Biomed. Opt. 7,378-387 (2002). [CrossRef] [PubMed]
  15. R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, andM. S. Feld, "Imaging human epithelial properties with polarized light-scattering spectroscopy," Nature Med. 7,1245-1248 (2001). [CrossRef] [PubMed]
  16. V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. M¨uller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, "Detection of preinvasive cancer cells," Nature (London) 406,35-36 (2000). [CrossRef] [PubMed]
  17. K. Sokolov, R. Drezek, K. Gossage, and R. Richards-Kortum, "Reflectance spectroscopy with polarized light: Is it sensitive to cellular and nuclear morphology," Opt. Express 5,302-317 (1999). [CrossRef] [PubMed]
  18. H. Fang, M. Ollero, E. Vitkin, L. M. Kimerer, P. B. Cipolloni, M. M. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman, "Noninvasive sizing of subcellular organelles with light scattering spectroscopy," IEEE J. Sel. Top. Quantum Electron. 9,267-276 (2003). [CrossRef]
  19. A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick, and R. R. Alfano, "Bacteria size determination by elastic light scattering," IEEE J. Sel. Top. Quantum Electron. 9,277-287 (2003). [CrossRef]
  20. W. P. Van DeMerwe, J. Czege,M. E. Milham, and B. V. Bronk, "Rapid optically based measurements of diameter and length for spherical or rod-shaped bacteria in vivo," Appl. Opt. 43,5295-5302 (2004). [CrossRef] [PubMed]
  21. N. N. Boustany, S. C. Kuo, and N. V. Thakor, "Optical scatter imaging: subcellular morphometry in situ with Fourier filtering," Opt. Lett. 26,1063-1065 (2001). [CrossRef]
  22. J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, "Light scattering from intact cells reports oxidativestress- induced mitochondrial swelling," Biophys. J. 88,2929-2939 (2005). [CrossRef] [PubMed]
  23. J. D. Wilson and T. H. Foster, "Mie theory interpretations of light scattering from intact cells," Opt. Lett. 30, 2442-2444 (2005). [CrossRef] [PubMed]
  24. Y. L. Kim, Y. Liu, R. K.Wali, H. K. Roy,M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003). [CrossRef]
  25. Y. Liu, Y. L. Kim, and V. Backman, “Development of a bioengineered tissue model and its application in the investigation of the depth selectivity of polarization gating,” Appl. Opt. 44, 2288–2299 (2005). [CrossRef] [PubMed]
  26. M. Bartlett, G. Huang, L. Larcom, and H. Jiang, "Measurement of particle size distribution in mammalian cells in vitro by use of polarized light spectroscopy," Appl. Opt. 43,1296-1307 (2004). [CrossRef] [PubMed]
  27. Y. Liu, Y. L. Kim, X. Li, and V. Backman, "Investigation of depth selectivity of polarization gating for tissue characterization," Opt. Express 13,601-611 (2005). [CrossRef] [PubMed]
  28. A. Wax, C. Yang, R. R. Dasari, and M. S. Feld, "Measurement of angular distributions by use of low-coherence interferometry for light-scattering spectroscopy," Opt. Lett. 26,322-324 (2001). [CrossRef]
  29. R. N. Graf and A. Wax, "Nuclear morphology measurements using Fourier domain low coherence interferometry," Opt. Express 13,4693-4698 (2005). [CrossRef]
  30. J. Goodman, Introduction to Fourier optics (McGraw-Hill, New York, 1996, 2nd ed.).
  31. A. Karlsson, J. He, J. Swartling, and S. Andersson-Engels, "Numerical simulations of light scattering by red blood cells," IEEE Trans. Biomed. Eng. 52,13-18 (2005). [CrossRef] [PubMed]
  32. J. C. Ramella-Roman, P. R. Bargo, S. A. Prahl, and S. L. Jacques, "Evaluation of spherical particle sizes with an asymmetric illumination microscope," IEEE J. Sel. Top. Quantum Electron. 9,301-306 (2003). [CrossRef]
  33. M. T. Valentine, A. K. Popp, D. A. Weitz, and P. D. Kaplan, "Microscope-based static light-scattering instrument," Opt. Lett. 26,890-892 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (932 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited