OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 23 — Nov. 13, 2006
  • pp: 11103–11112

Optical implementation of iterative fractional Fourier transform algorithm

Joonku Hahn, Hwi Kim, and Byoungho Lee  »View Author Affiliations


Optics Express, Vol. 14, Issue 23, pp. 11103-11112 (2006)
http://dx.doi.org/10.1364/OE.14.011103


View Full Text Article

Acrobat PDF (674 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An optical implementation of iterative fractional Fourier transform algorithm is proposed and demonstrated. In the proposed implementation, the phase-shifting digital holography technique and the phase-type spatial light modulator are adopted for the measurement and the modulation of complex optical fields, respectively. With the devised iterative fractional Fourier transform system, we demonstrate two-dimensional intensity distribution synthesis in the fractional Fourier domain and three-dimensional intensity distribution synthesis simultaneously forming desired intensity distributions at several multi-focal planes.

© 2006 Optical Society of America

OCIS Codes
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(090.1760) Holography : Computer holography
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Fourier Optics and Optical Signal Processing

History
Original Manuscript: September 5, 2006
Revised Manuscript: October 31, 2006
Manuscript Accepted: October 31, 2006
Published: November 13, 2006

Citation
Joonku Hahn, Hwi Kim, and Byoungho Lee, "Optical implementation of iterative fractional Fourier transform algorithm," Opt. Express 14, 11103-11112 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-23-11103


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. Turunen and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (John Wiley and Sons Ltd., New York, 1997).
  2. B. Kress and P. Meyrueis, Digital Diffractive Optics: An Introduction to Planar Diffraction Optics and Related Technology (John Wiley and Sons Ltd., New York, 2000).
  3. H. Kim, K. Choi, and B. Lee, "Diffractive optic synthesis and analysis of light fields and recent applications," Jpn. J. Appl. Phys. 45, 6555-6575 (2006). [CrossRef]
  4. V. A. Soifer, V. V. Kotlyar, and L. Doskolovich, Iterative Methods for Diffractive Optical Elements Computation (Tayor & Francis Ltd., London, 1997).
  5. T. Shirai and T. H. Barnes, "Adaptive restoration of a partially coherent blurred image using an all-optical feedback interferometer with a liquid-crystal device," J. Opt. Soc. Am. A 19, 369-377 (2002).
  6. J. Hahn, H. Kim, K. Choi, and B. Lee, "Real-time digital holographic beam-shaping system with a genetic feedback tuning loop," Appl. Opt. 45, 915-924 (2006). [CrossRef]
  7. H. Kim and B. Lee, "Optimal nonmonotonic convergence of the iterative Fourier-transform algorithm," Opt. Lett. 30, 296-298 (2005). [CrossRef]
  8. H. Kim, B. Yang, and B. Lee, "Iterative Fourier transform algorithm with regularization for the optimal design of diffractive optical elements," J. Opt. Soc. Am. A 12, 2353-2365 (2004). [CrossRef]
  9. K. Choi, H. Kim, and B. Lee, "Synthetic phase holograms for auto-stereoscopic image display using a modified IFTA," Opt. Express 12, 2454-2462 (2004). [CrossRef]
  10. H. M. Ozaktas and D. Mendlovic, "Fractional Fourier Optics," J. Opt. Soc. Am. A 12, 743-751 (1995).
  11. A. Sahin, H. M. Ozaktas, and D. Mendlovic, "Optical implementation of the two-dimensional fractional Fourier transform with different orders in the two dimensions," Opt. Commun. 120, 134-138 (1995). [CrossRef]
  12. A. Sahin, H. M. Ozaktas, and D. Mendlovic, "Optical implementations of two-dimensional fractional Fourier transforms and linear canonical transforms with arbitrary parameters," Appl. Opt. 37, 2130-2141 (1998).
  13. H. M. Ozaktas, M. A. Kutay, and Z. Zalevsky, The Fractional Fourier Transform with Applications in Optics and Signal Processing (John Wiley and Sons Ltd., New York, 2001).
  14. D. Mendlovic, Y. Bitran, R. G. Dorsch, C. Ferreira, J. Garcia, and H. M. Ozaktaz, "Anamorphic fractional Fourier transform: optical implementation and applications," Appl. Opt. 34, 7451-7456 (1995).
  15. T. Kim and T-C. Poon, " Three-dimensional matching by use of phase-only holographic information and the Wigner distribution," J. Opt. Soc. Am. A 12, 2520-2528 (2000).
  16. P. Andrés, W. D. Furlan, G. Saavedra, and A. W. Lohmann, "Variable fractional Fourier processor: a simple implementation," J. Opt. Soc. Am. A 14, 853-858 (1997).
  17. E. Tajahuerce, G. Saavedra, W. D. Furlan, E. E. Sicre, and P. Andrés, "White-light optical implementation of the fractional Fourier transform with adjustable order control," Appl. Opt. 39, 238-245 (2000).
  18. I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268-1270 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: GIF (234 KB)     
» Media 2: GIF (132 KB)     
» Media 3: GIF (884 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited