OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 23 — Nov. 13, 2006
  • pp: 11164–11177

Doubly negative metamaterials in the near infrared and visible regimes based on thin film nanocomposites

Vitaliy Lomakin, Yeshaiahu Fainman, Yaroslav Urzhumov, and Gennady Shvets  »View Author Affiliations

Optics Express, Vol. 14, Issue 23, pp. 11164-11177 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1136 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optical metamaterial characterized simultaneously by negative permittivity and permeability, viz. doubly negative metamaterial (DNM), that comprises deeply subwavelength unit cells is introduced. The DNM can operate in the near infrared and visible spectra and can be manufactured using standard nanofabrication methods with compatible materials. The DNM”s unit cell comprise a continuous optically thin metal film sandwiched between two identical optically thin metal strips separated by a small distance form the film. The incorporation of the middle thin metal film avoids limitations of metamaterials comprised of arrays of paired wires/strips/patches to operate for large wavelength / unit cell ratios. A cavity model, which is a modification of the conventional patch antenna cavity model, is developed to elucidate the structure”s electromagnetic properties. A novel procedure for extracting the effective permittivity and permeability is developed for an arbitrary incident angle and those parameters were shown to be nearly angle-independent. Extensions of the presented two dimensional structure to three dimensions by using square patches are straightforward and will enable more isotropic DNMs.

© 2006 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(310.6860) Thin films : Thin films, optical properties

ToC Category:

Original Manuscript: August 16, 2006
Revised Manuscript: October 20, 2006
Manuscript Accepted: October 26, 2006
Published: November 13, 2006

Vitaliy Lomakin, Yeshaiahu Fainman, Yaroslav Urzhumov, and Gennady Shvets, "Doubly negative metamaterials in the near infrared and visible regimes based on thin film nanocomposites," Opt. Express 14, 11164-11177 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ϵ and &mu," Soviet Physics - Uspekhi 10, 509-514 (1968). [CrossRef]
  2. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  3. D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, "Partial focusing of radiation by a slab of indefinite media," Appl. Phys. Lett. 84, 2244-2246 (2004). [CrossRef]
  4. Y. Horii, C. Caloz, and T. Itoh, "Super-compact multilayered left-handed transmission line and diplexer application," IEEE Trans. Microwave Theory Tech. 53, 1527-1534 (2005). [CrossRef]
  5. A. Alu and N. Engheta, "Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers," IEEE Trans. Microwave Theory Tech. 52, 199-210 (2004). [CrossRef]
  6. N. Engheta and R. W. Ziolkowski, "A positive future for double-negative metamaterials," IEEE Trans. Microwave Theory Tech. 53, 1535-1556 (2005). [CrossRef]
  7. R. W. Ziolkowski and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E 64, 056625-056621 (2001). [CrossRef]
  8. Z. Jiangfeng, T. Koschny, Z. Lei, G. Tuttle, and C. M. Soukoulis, "Experimental demonstration of negative index of refraction," Appl. Phys. Lett. 88, 221103-221101 (2006). [CrossRef]
  9. P. Kolinko and D. R. Smith, "Numerical study of electromagnetic waves interacting with negative index materials," Opt. Express 11, (2003). [CrossRef] [PubMed]
  10. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  11. G. Shvets and Y. Urzhumov, "Negative index meta-materials based on two-dimensional metallic structures," J. Opt. A 8, S122 (2006). [CrossRef]
  12. Z. Shuang, F. Wenjun, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, "Midinfrared resonant magnetic nanostructures exhibiting a negative permeability," Phys. Rev. Lett. 94, 037402-037401 (2005). [CrossRef]
  13. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the magnetic response of split-ring resonators at optical frequencies," Phys. Rev. Lett. 95, 223902-223901 (2005). [CrossRef] [PubMed]
  14. V. M. Shalaev, C. Wenshan, U. K. Chettiar, Y. Hsiao-Kuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005). [CrossRef]
  15. Z. Shuang, F. Wenjun, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404-137401 (2005). [CrossRef]
  16. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006). [CrossRef] [PubMed]
  17. G. Shvets and Y. A. Urzhumov, "Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances," Phys. Rev. Lett. 93, 243902-243901 (2004). [CrossRef]
  18. A. Alu, A. Salandrino, and N. Engheta, "Negative effective permeability and left-handed materials at optical frequencies," Opt. Express 14, 1557 (2006). [CrossRef] [PubMed]
  19. J. R. James and P. S. Hall, Handbook of Microstrip Antennas (1988).
  20. C. A. Balanis, Antenna Theory: Analysis and Design, Third Edition ed. (John Wiley, 2005).
  21. A. K. Sarychev, G. Shvets, and V. M. Shalaev, "Magnetic Plasmon Resonance," Phys. Rev. E 73, 036609 (2006). [CrossRef]
  22. W.J. Padilla, D.R. Smith, and D.N. Basov, "Spectroscopy of metamaterials from infrared to optical frequencies," J. Opt. Society America B 23, 404 (2006). [CrossRef]
  23. D. J. Bergman and D. Stroud, ``Properties of Macroscopically Inhomogeneous Media,' Solid State Phys. 46, 147 (1992). [CrossRef]
  24. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002). [CrossRef]
  25. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, "Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995). [CrossRef]
  26. P. Lalanne, "Improved formulation of the coupled-wave method for two-dimensional gratings," J. Opt. Soc. Am. A 14, 1592-1598 (1997). [CrossRef]
  27. J. Jin, The Finite Elements Method in Electromagnetics, Second Edition (Wiley, New York, 2002).
  28. I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, "Electrostatic (plasmon) resonances in nanoparticles," Phys. Rev. B 72, 155412 (2005). [CrossRef]
  29. N. M. Lawandy, "Localized surface plasmon singularities in amplifying media," Appl. Phys. Lett. 85, 5040 (2004). [CrossRef]
  30. F. Hide, B. J. Schwartz, M. A. Diaz-Garcia, and A. J. Heeger, "Conjugated polymers as solid state laser materials," Synth. Met. 91, 35 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited