OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 23 — Nov. 13, 2006
  • pp: 11178–11183

Layered superlensing in two-dimensional photonic crystals

Haifei Zhang, Linfang Shen, Lixin Ran, Yu Yuan, and Jin Au Kong  »View Author Affiliations


Optics Express, Vol. 14, Issue 23, pp. 11178-11183 (2006)
http://dx.doi.org/10.1364/OE.14.011178


View Full Text Article

Enhanced HTML    Acrobat PDF (442 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate layered superlensing in two-dimensional photonic crystals structured by both square and triangular lattices. In virtue of equifrequency contour analysis and FDTD calculation, both near field and far field imaging are displayed. Layered superlensing consisting of only triangular lattice photonic crystal is also studied and it exhibits more flexibility than the single layer counterpart. That is, the objective distance can be changed freely while keeping the image distance constant and vice versa. Hence, farther field imaging is achieved.

© 2006 Optical Society of America

OCIS Codes
(110.2960) Imaging systems : Image analysis
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Metamaterials

History
Original Manuscript: August 23, 2006
Revised Manuscript: October 21, 2006
Manuscript Accepted: October 22, 2006
Published: November 13, 2006

Citation
Haifei Zhang, Linfang Shen, Lixin Ran, Yu Yuan, and Jin Au Kong, "Layered superlensing in two-dimensional photonic crystals," Opt. Express 14, 11178-11183 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-23-11178


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of and," Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  2. R. W. Ziolkowski, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E 64, 056625 (2001). [CrossRef]
  3. I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, "BW media- media with negative parameters, capable of supporting backward waves," Microwave Opt. Technol. Lett. 31, 129-133 (2001). [CrossRef]
  4. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  5. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996). [CrossRef] [PubMed]
  6. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Technol. 47, 2075-2084 (1999). [CrossRef]
  7. L. Ran, J. Huangfu, H. Chen, X. Zhang, K. Cheng, T. M. Grzegorczyk, and J. A. Kong, "Experimental study on several left-handed metamaterials," PIER 51, 249-279 (2005). [CrossRef]
  8. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  9. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000). [CrossRef]
  10. S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, "Refraction in media with a Negative Refractive Index," Phys. Rev. Lett. 90, 107402 (2003). [CrossRef] [PubMed]
  11. S. Foteinopoulou and C. M. Soukoulis, "Negative refraction and left-handed behavior in two-dimensional photonic crystals," Phys. Rev. B 67, 235107 (2003). [CrossRef]
  12. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Negative refraction by photonic crystals," Nature (London) 423, 604-605 (2003). [CrossRef] [PubMed]
  13. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (2002). [CrossRef]
  14. X. Wang, Z. F. Ren, and K. Kempa, "Unrestricted superlensing in a triangular two dimensional photonic crystal," Opt. Express 12,2919-2924 (2004). [CrossRef] [PubMed]
  15. Z.-Y. Li and L.-L. Lin, "Evaluation of lensing in photonic crystal slabs exhibiting negative refraction," Phys. Rev. B 68, 245110 (2003). [CrossRef]
  16. S. Xiao, M. Qiu, Z. Ruan, and S. He, "Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction," Appl. Phys. Lett. 85, 4269-4271 (2004). [CrossRef]
  17. X. Zhang, "Image resolution depending on slab thickness and object distance in a two-dimensional photoniccrystal-based superlens," Phys. Rev. B 70, 195110 (2004). [CrossRef]
  18. X. Wang and K. Kempa, "Effects of disorder on subwavelength lensing in two-dimensional photonic crystal slabs," Phys. Rev. B 71, 085101 (2005). [CrossRef]
  19. A. Martinez and J. Marti, "Negative refraction in two-dimensional photonic crystals: Role of lattice orientation and interface termination," Phys. Rev. B 71, 235115 (2005). [CrossRef]
  20. A. Martinez and J. Marti, "Analysis of wave focusing inside a negative-index photonic-crystal slab," Opt. Express 13, 2858-2868 (2005). [CrossRef] [PubMed]
  21. C. Li, J. M. Holt, and A. L. Efros, "Far-field imaging by the Veselago lens made of a photonic crystal," J. Opt. Soc. Am. B 23, 490-497 (2006). [CrossRef]
  22. C. Y. Li, J. M. Holt, and A. L. Efros, "Imaging by the Veselago lens based upon a two-dimensional photonic crystal with a triangular lattice," J. Opt. Soc. Am. B 23, 963-968 (2006). [CrossRef]
  23. C. Shen, K. Michielsen, and H. De Raedt, "Image transfer by cascaded stack of photonic crystal and air layers," Opt. Express 14, 879-886 (2006). [CrossRef] [PubMed]
  24. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).
  25. M. Plihal, A. Shambrook, and A. A. Maradudin, "Two-dimensional photonic band structures," Optics Commun. 80, 3-4 (1991). [CrossRef]
  26. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966). [CrossRef]
  27. A. Taflove and S. C. Hagness, Computational Electrodynamics—the Finite-Difference Time-Domain Method (Artech House, Norwood, MA, 2000).
  28. S. D. Gedney, "An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices," IEEE Trans. Antennas Propagat. 44, 1630-1639 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited