OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 23 — Nov. 13, 2006
  • pp: 11194–11203

Subdiffraction focusing of scanning beams by a negative-refraction layer combined with a nonlinear layer

A. Husakou and J. Herrmann  »View Author Affiliations

Optics Express, Vol. 14, Issue 23, pp. 11194-11203 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (213 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We evaluate the possibility to focus scanning light beams below the diffraction limit by using the combination of a nonlinear material with a Kerr-type nonlinearity or two-photon absorption to create seed evanescent components of the beam and a negative-refraction material to enhance them. Superfocusing to spots with a FWHM in the range of 0.2λ is theoretically predicted both in the context of the effective-medium theory and by the direct numerical solution of Maxwell equations for an inhomogeneous photonic crystal. The evolution of the transverse spectrum and the dependence of superfocusing on the parameters of the negative-refraction material are also studied. We show that the use of a Kerr-type nonlinear layer for the creation of seed evanescent components yields focused spots with a higher intensity compared with those obtained by the application of a saturable absorber.

© 2006 Optical Society of America

OCIS Codes
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(220.2560) Optical design and fabrication : Propagating methods

ToC Category:

Original Manuscript: April 26, 2006
Revised Manuscript: September 27, 2006
Manuscript Accepted: September 27, 2006
Published: November 13, 2006

A. Husakou and J. Herrmann, "Subdiffraction focusing of scanning beams by a negative-refraction layer combined with a nonlinear layer," Opt. Express 14, 11194-11203 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. KK. Wong, Resolution enhancement techniques in optical lithography (SPIE Press, Bellingham, Washington, 2001). [CrossRef]
  2. T. W. McDaniel, Handbook of magneto-optical data recording: materials, subsystems, techniques (Noyes publishing, Westwood, 1997).
  3. E. Betzig, J. K. Trautmann, T. D. Harris, J. S. Weiner, R. L. Kostelak, "Breaking the diffraction barrier: optical microscopy on a nanometric scale," Science 251, 1468-1450 (1991). [CrossRef] [PubMed]
  4. S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2626 (1990). [CrossRef]
  5. M. A. Paesler and P. J. Moyer, Near-field optics: theory, instrumentation and applications, John Wiley and Sons, New York (1996).
  6. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ∑ and ," Soviet Phys. Usp. 10, 509-518 (1968) [Usp. Fiz. Nauk 92, 517-526 (1967).]. [CrossRef]
  7. J. B. Pendry, "Negative refraction makes perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  8. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  9. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000). [CrossRef]
  10. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Electromagnetic waves: Negative refraction by photonic crystals," Nature 423, 604-605 (2003). [CrossRef] [PubMed]
  11. G. Dolling, C. Enkrich, M. Wegener, J. Zhou, C.M. Soukoulis, S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett 30, 3198-3200 (2005). [CrossRef] [PubMed]
  12. V. M. Shalaev, W. Cai, U. Chettiar, H. K. Yuan, A.K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett 30, 3356-3358 (2005). [CrossRef]
  13. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, "Nanofabricated media with negative permeability at visible frequencies," Nature 438, 335-338 (2005). [CrossRef] [PubMed]
  14. Q. Thommen and P. Mandel, "Electromagnetically Induced Left Handedness in Optically Excited Four-Level Atomic Media", Phys. Rev. Lett. 96, 053601 (2006). [CrossRef] [PubMed]
  15. C. Luo, S.G. Johnson, J.D. Joannopoulos, and J.B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104(R) (2002). [CrossRef]
  16. N. Fang, H. Lee, C. Sun, X. Zhang, "SubDiffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005). [CrossRef] [PubMed]
  17. D. Melville and R. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127-2134 (2005) [CrossRef] [PubMed]
  18. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, C. M. Soukoulis, "Magnetic Metamaterials at Telecommunication and Visible Frequencies," Phys. Rev. Lett. 95, 203901 (2005). [CrossRef] [PubMed]
  19. A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thyln, A. Talneau, and S. Anand, "Negative Refraction at Infrared Wavelengths in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 93, 073902 (2004). [CrossRef] [PubMed]
  20. Z. Lu, J.A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, "Three-Dimensional Subwavelength Imaging by a Photonic-Crystal Flat Lens Using Negative Refraction at Microwave Frequencies," Phys. Rev. Lett. 95, 153901 (2005). [CrossRef] [PubMed]
  21. P. V. Parimi, W. T. Lu, P. Vodo and S. Sridhar, "Photonic crystals: Imaging by flat lens using negative refraction," Nature 426, 404-404 (2003). [CrossRef] [PubMed]
  22. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, "Subwavelength Resolution in a Two- Dimensional Photonic-Crystal-Based Superlens," Phys. Rev. Lett. 91, 207401 (2003). [CrossRef] [PubMed]
  23. A. Husakou and J. Herrmann, "Superfocusing of light below the diffraction limit by photonic crystals with negative refraction," Opt. Express 12, 6491-6497 (2004) [CrossRef] [PubMed]
  24. A. Husakou and J. Herrmann, "Focusing of Scanning Light Beams below the Diffraction Limit without Near- Field Spatial Control Using a Saturable Absorber and a Negative-Refraction Material," Phys. Rev. Lett. 96, 013902 (2006). [CrossRef] [PubMed]
  25. M. Kolesik and J. V. Moloney, "Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations," Phys. Rev. E 70, 036604 (2004). [CrossRef]
  26. Y. J. Ding, C. L. Guo, G. A. Swartzlander,Jr., J. B. Khurgin, and A. E. Kaplan, "Spectral measurement of the nonlinear refractive index in ZnSe using self-bending of a pulsed laser beam," Opt. Lett. 15, 1431-1433 (1990). [CrossRef] [PubMed]
  27. R. S. Bennink, Y.-K. Yoon, and R. W. Boyd, "Acessing the optical nonlinearity of metals with metal-dielectric photonic bandgap structures," Opt. Lett. 24, 1416-1418 (1999). [CrossRef]
  28. L. Lucchetti, M. Gentili, and F. Simoni, "Pretransportal enhancement of the optical nonlinearity of thin dye-doped liquid crystals in the nematic phase," Appl. Phys. Lett. 86, 151117 (2005). [CrossRef]
  29. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003). [CrossRef]
  30. K. Sakoda, Optical properties of photonic crystals, Springer, 2001.
  31. C. Luo, S. G. Johnson, and J. D. Joannopoulos, "Subwavelength imaging in photonic crystals," Phys. Rev. B 68, 045115 (2003). [CrossRef]
  32. G. M. Gale and A. Mysyrowicz, "Direct creation of excitonic molecules in CuCl by giant two-photon absorption," Phys. Rev. Lett. 32, 737-740 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (121 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited