OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 23 — Nov. 13, 2006
  • pp: 11215–11221

Rapid, in-line, non-interferometric auto- and cross-correlator for microscopy

Christopher N. LaFratta, Linjie Li, and John T. Fourkas  »View Author Affiliations

Optics Express, Vol. 14, Issue 23, pp. 11215-11221 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (363 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a simple, in-line scheme for determining the duration of ultrafast pulses in the focal region of a high-numerical-aperture microscope objective. Photocurrent generated in a GaAsP photodiode by two-photon absorption of orthogonally-polarized laser beams that meet at a slight angle is used to autocorrelate lasers non-interferometrically. Crosscorrelation between two lasers is also demonstrated. This setup, which can be built readily by a microscope user who is not an optics expert, allows for the rapid characterization of pulses that can be hundreds of fs long while making it possible for all of the laser intensity to be employed for nonlinear optical microscopy after the pulse duration has been measured.

© 2006 Optical Society of America

OCIS Codes
(180.0180) Microscopy : Microscopy
(320.5550) Ultrafast optics : Pulses

ToC Category:

Original Manuscript: September 8, 2006
Manuscript Accepted: October 23, 2006
Published: November 13, 2006

Virtual Issues
Vol. 1, Iss. 12 Virtual Journal for Biomedical Optics

Christopher N. LaFratta, Linjie Li, and John T. Fourkas, "Rapid, in-line, non-interferometric auto- and cross-correlator for microscopy," Opt. Express 14, 11215-11221 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Denk, J. H. Strickler, and W. Webb, "Two-photon laser-scanning fluorescence microscopy," Science 248, 73-76 (1990). [CrossRef] [PubMed]
  2. L. Moreaux, O. Sandre, M. Blanchard-Desce, and J. Mertz, "Membrane imaging by Simultaneous Second-Harmonic Generation and Two-Photon Microscopy," Opt. Lett. 25, 320-322 (2000). [CrossRef]
  3. J. A. Squier, M. Muller, G. J. Brakenhoff, and K. R. Wilson, "Third Harmonic Generation Microscopy," Opt. Express 3, 315-324 (1998). [CrossRef] [PubMed]
  4. J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity," J. Phys. Chem. B 105, 1277-1280 (2001). [CrossRef]
  5. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Natl. Acad. Sci. USA 97, 8206-8210 (2000). [CrossRef] [PubMed]
  6. E. O. Potma, W. P. de Boeij, and D. A. Wiersma, "Femtosecond Dynamics of Intracellular Water Probed with Nonlinear Optical Kerr Effect Microspectroscopy," Biophys. J. 80, 3019-3024 (2001). [CrossRef] [PubMed]
  7. T. Baldacchini, and J. T. Fourkas, "Three-dimensional nanofabrication using multiphoton absorption," in Encyclopedia of Nanoscience and Nanotechnology, J. A. Schwarz, C. I. Contescu, and K. Putyera, eds. (Marcel Dekker, New York, 2004), pp. 3905-3915.
  8. D. Yang, S. J. Jhaveri, and C. K. Ober, "Three-dimensional microfabrication by Two-Photon Lithography," MRS Bull. 30, 976-982 (2005). [CrossRef]
  9. H. B. Sun, and S. Kawata, "Two-Photon Laser Precision Microfabrication and its applications to micro-nano devices and systems," J. Lightwave Technol. 21, 624-633 (2003). [CrossRef]
  10. D. N. Fittinghoff, J. A. Squier, C. P. J. Barty, J. N. Sweetser, R. Trebino, and M. Muller, "Collinear Type II Second-Harmonic-Generation frequency-resolved Optical Gating for use with high-numerical-aperture objectives," Opt. Lett. 23, 1046-1048 (1998). [CrossRef]
  11. I. Amat-Roldan, I. G. Cormack, P. Loza-Alvarez, and D. Artigas, "Starch-based Second-Harmonic-Generated Collinear Frequency-Resolved Optical Gating Pulse Characterization at the Focal Plane of a High-Numerical-Aperture Lens," Opt. Lett. 29, 2282-2284 (2004). [CrossRef] [PubMed]
  12. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer, Norwell, MA, 2002). [CrossRef]
  13. M. Muller, J. Squier, and G. J. Brakenhoff, "Measurement of Femtosecond Pulses in the Focal Point of a High-Numerical-Aperture Lens by 2-Photon Absorption," Opt. Lett. 20, 1038-1040 (1995). [CrossRef] [PubMed]
  14. A. C. Millard, D. N. Fittinghoff, J. A. Squier, M. Muller, and A. L. Gaeta, "Using GaAsP Photodiodes to Characterize Ultrashort Pulses Under High Numerical Aperture Focusing in Microscopy," J. Microsc.-Oxford 193, 179-181 (1999). [CrossRef]
  15. K. S. Wong, T. Sun, B. K. K. Fung, I. K. Sou, and G. K. L. Wong, "Visible to ultraviolet femtosecond autocorrelation measurements based on two-photon absorption using ZnSSe photodetector," J. Cryst. Growth 227, 717-721 (2001). [CrossRef]
  16. D. N. Fittinghoff, J. A. der Au, and J. Squier, "Spatial and temporal characterizations of Femtosecond Pulses at High-Numerical Aperture using Collinear, background-free, Third-Harmonic Autocorrelation," Opt. Commun. 247, 405-426 (2005). [CrossRef]
  17. F. Quercioli, B. Tiribilli, and M. Vassalli, "Wavefront-Division Lateral Shearing Autocorrelator for Ultrafast Laser Microscopy," Opt. Express 12, 4303-4312 (2004). [CrossRef] [PubMed]
  18. F. Quercioli, A. Ghirelli, B. Tiribilli, and M. Vassalli, "Ultracompact autocorrelator for Multiphoton Microscopy," Microscopy Research and Technique 63, 27-33 (2004). [CrossRef]
  19. F. Cannone, G. Chirico, G. Baldini, and A. Diaspro, "Measurement of the Laser Pulse Width on the Microscope Objective Plane by Modulated Autocorrelation Method," J. Microsc. 210, 149-157 (2003). [CrossRef] [PubMed]
  20. A. M. Streltsov, K. D. Moll, A. L. Gaeta, P. Kung, D. Walker, and M. Razeghi, "Pulse autocorrelation measurements based on Two- and Three-Photon Conductivity in a GaN Photodiode," Appl. Phys. Lett. 75, 3778-3780 (1999). [CrossRef]
  21. P. Langlois, and E. P. Ippen, "Measurement of Pulse Asymmetry by Three-Photon-Absorption Autocorrelation in a GaAsP Photodiode," Opt. Lett. 24, 1868-1870 (1999). [CrossRef]
  22. J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, "Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode," Opt. Lett. 22, 1344-1346 (1997). [CrossRef]
  23. S. Santran, M. E. Martinez-Rosas, L. Canioni, and L. Sarger, "Characterization of Optical Nonlinearity in semiconductor photodiodes using cross-polarized autocorrelation," IEEE J. Quantum Electron. 40, 1687-1694 (2004). [CrossRef]
  24. H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, New York, 1986).
  25. J. T. Fourkas, R. Trebino, and M. D. Fayer, "The Grating Decomposition Method: A new approach for understanding polarization-selective transient grating experiments. I. Theory," J. Chem. Phys. 97, 69-77 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited