OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 23 — Nov. 13, 2006
  • pp: 11256–11264

Nonlinear phase matching locking via optical readout

Kirk McKenzie, Malcolm B. Gray, Ping Koy Lam, and David E. McClelland  »View Author Affiliations


Optics Express, Vol. 14, Issue 23, pp. 11256-11264 (2006)
http://dx.doi.org/10.1364/OE.14.011256


View Full Text Article

Enhanced HTML    Acrobat PDF (212 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For optimal χ(2) nonlinear interaction the phase matching condition must be satisfied. For type I and type II phase matched materials, this is generally achieved by controlling the temperature of the nonlinear media. We describe a technique to readout the phase-matching condition interferometrically, and experimentally demonstrate feedback control in a degenerate optical parametric amplifier (OPA) which is resonant at both the fundamental and harmonic frequencies. The interferometric readout technique is based on using the cavity resonances at the fundamental and harmonic frequencies to enable the readout of the phase mismatch. We achieve relatively fast temperature feedback using the photothermal effect, by modulating the amplitude of the OPA pump beam.

© 2006 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 9, 2006
Revised Manuscript: October 11, 2006
Manuscript Accepted: October 11, 2006
Published: November 13, 2006

Citation
Kirk McKenzie, Malcolm B. Gray, Ping Koy Lam, and David E. McClelland, "Nonlinear phase matching locking via optical readout," Opt. Express 14, 11256-11264 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-23-11256


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Giordmaine and R. C. Miller, "Tunable coherent parametric oscillation in LiNbO3 at optical frequencies," Phys. Rev. Lett. 14, 973-976 (1965). [CrossRef]
  2. R. C. Eckardt, C. D. Nabors, W. J. Kozlovsky and R. L. Byer, "Optical parametric oscillator frequency tuning and control," J. Opt. Soc. Am. B 8, 646-667 (1991). [CrossRef]
  3. For Example: D. F. Walls and G. J. Milburn, Quantum Optics, (Springer-Verlag, Berlin, 1st ed., 1994).
  4. We define doubly resonant to be resonant at both the fundamental and harmonic frequencies.
  5. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B: Photophys. Laser Chem. 31, 97-105 (1983). [CrossRef]
  6. Assuming there is no differential phase shift on reflection between the harmonic and fundamental frequencies on the mirror coatings. In general, there will be a differential phase shift on reflection on the mirror coatings and on transmission through anti-reflective (AR) coatings. In our system we experimentally determine that the sum of the differential phase shifts per round trip of the cavity is close to an integer multiple times π. When the differential phase shift is significantly large we compensate for the dispersion by inserting a dichroic AR coated BK7 substrate placed in the cavity. This substrate is angled such that the dispersion on transmission through the substrate compensates for the differential phase shift on the mirror coatings and AR coatings, see Ref. [7].
  7. K. McKenzie, M. B. Gray, S. Goßler, P. K. Lam, and D. E. McClelland, "Squeezed State Generation for Interferometric Gravitational-Wave Detection," Class. Quantum Grav. 23, S245-S250 (2006).
  8. M. J. Collett and C.W. Gardiner, "Squeezing of intracavity and traveling-wave light fields produced in parametric amplification," Phys. Rev. A 30, 1386-1391 (1984). [CrossRef]
  9. A. E. Siegman, Lasers, (University Science Books, 1986).
  10. A. Yariv, Optical Electonics in Modern Communications, Fifth Edition, (Oxford University Press 1997).
  11. V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin, "Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae," Phys. Lett. A 264, 1-10 (1999). [CrossRef]
  12. Y. T. Liu and K. S. Thorne, "Thermoelastic noise and homogeneous thermal noise in finite sized gravitationalwave test masses," Phys. Rev. D 62, 122002 (2000). [CrossRef]
  13. M. Cerdonio, L. Conti, A. Heidmann, and M. Pinard, "Thermoelastic effects at low temperatures and quantum limits in displacement measurements," Phys. Rev. D 63, 082003 (2001). [CrossRef]
  14. K. Goda, K. McKenzie, E. E. Mikhailov, P. K. Lam, D. E. McClelland, and N. Mavalvala, "Photothermal fluctuations as a fundamental limit to low-frequency squeezing in a degenerate optical parametric oscillator," Phys. Rev. A 72, 043819 (2005) [CrossRef]
  15. The SHG is a custom Diabolo model developed by Innolight GmbH.
  16. S. P. Tewari and G. S. Agarwal, "Control of phase matching and nonlinear generation in dense media by resonant fields," Phys. Rev. Lett. 171811-1814 (1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited