OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 23 — Nov. 13, 2006
  • pp: 11330–11338

Dispersive contour-path finite-difference time-domain algorithm for modelling surface plasmon polaritons at flat interfaces

Ahmad Mohammadi and Mario Agio  »View Author Affiliations

Optics Express, Vol. 14, Issue 23, pp. 11330-11338 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (117 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the accuracy of the two-dimensional Finite-Difference Time-Domain (FDTD) method in modelling Surface Plasmon Polaritons (SPPs) in the case of a single metal-dielectric interface and of a thin metal film showing that FDTD has difficulties in the low-group-velocity region of the SPP. We combine a contour-path approach with Z transform to handle both the electromagnetic boundary conditions at the interface and the negative dispersive dielectric function of the metal. The relative error is thus significantly reduced.

© 2006 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(130.0130) Integrated optics : Integrated optics
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: September 5, 2006
Revised Manuscript: October 25, 2006
Manuscript Accepted: October 25, 2006
Published: November 13, 2006

Ahmad Mohammadi and Mario Agio, "Dispersive contour-path finite-difference time-domain algorithm for modeling surface plasmon polaritons at flat interfaces," Opt. Express 14, 11330-11338 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988)
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424,824-830 (2003). [CrossRef] [PubMed]
  3. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, MA, 2005).
  4. D. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE Press, 2000). [CrossRef]
  5. T. G. Jurgens, A. Taflove, K. Umaschankar, and T. G. Moore, "Finite-difference time-domain modeling of curved surfaces," IEEE Trans. Antennas Propag. 40,357-365 (1992). [CrossRef]
  6. C. Oubre, and P. Nordlander, "Optical properties of Metallodielectric Nanostructures calculated using the finite difference time domain method," J. Phys. Chem. B 108,17740-17747 (2004). [CrossRef]
  7. H. Shin, and S. Fan, "All-angle negative refraction for Surface Plasmon Waves using a metal-dielectric-metal structure," Phys. Rev. Lett. 96, 073907(4) (2006).
  8. K.-P. Hwang, and A. C. Cangellaris, "Effective permittivities for second-order accurate FDTD equations at Dielectric interfaces," IEEE Microw. Wirel. Compon. Lett. 11,158-160 (2001). [CrossRef]
  9. A. Mohammadi, and M. Agio, "Contour-path effective permittivities for the twodimensional finite-difference time-domain method," Opt. Express 13,10367-10381 (2005). [CrossRef] [PubMed]
  10. M. K. Kärkkäinen, Subcell FDTD modeling of electrically thin dispersive layers," IEEE Trans. Microwave Theory Tech. 51,1774-1780 (2003). [CrossRef]
  11. D. Popovic, and M. Okoniewski, "Effective permittivity at the interface of dispersive dielectrics in FDTD," IEEE Microw. Wirel. Compon. Lett. 13,265-267 (2003). [CrossRef]
  12. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, UK, 1999), 7th ed.
  13. C. T. Chan, Q. L. Yu, and K. M. Ho, "Order-N spectral method for electromagnetic waves," Phys. Rev. B 51,16635-16642 (1995). [CrossRef]
  14. O. Ramadan and A. Y. Oztoprak, "Z-transform implementation of the perfectly matched layer for truncating FDTD domains," IEEE Microw. Wirel. Compon. Lett. 13,402-404 (2003). [CrossRef]
  15. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996), 7th ed.
  16. In the error calculation we choose wavevectors k ≥ 1.5ks (Fig. 3 and Fig. 4) and k ≥ 2.5ks (Fig. 6) to focus on the low-group-velocity region.
  17. The fit is performed using the logarithm of the error, so that the exponent 〈 is obtained from log y = 〈 log x+loga. The errors for ⊗ = 2 −4nm are excluded from the fit since the Fourier error is of the same order of magnitude and thus it may have an effect on the actual FDTD accuracy.
  18. C. Hulse and A. Knoesen, "Dispersive models for the finite-difference time-domain method: design, analysis, and implementation," J. Opt. Soc. Am. A 11, 1802-1811 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited