OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 23 — Nov. 13, 2006
  • pp: 11362–11371

Numerical computation of the Green’s function for two-dimensional finite-size photonic crystals of infinite length

F. Seydou, Omar M. Ramahi, Ramani Duraiswami, and T. Seppänen  »View Author Affiliations


Optics Express, Vol. 14, Issue 23, pp. 11362-11371 (2006)
http://dx.doi.org/10.1364/OE.14.011362


View Full Text Article

Enhanced HTML    Acrobat PDF (154 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop a numerical algorithm that computes the Green’s function of Maxwell equation for a 2D finite-size photonic crystal, composed of rods of arbitrary shape. The method is based on the boundary integral equation, and a Nyström discretization is used for the numerical solution. To provide an exact solution that validates our code we derive multipole expansions for circular cylinders using our integral equation approach. The numerical method performs very well on the test case. We then apply it to crystals of arbitrary shape and discuss the convergence.

© 2006 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(290.4210) Scattering : Multiple scattering

ToC Category:
Photonic Crystals

History
Original Manuscript: June 28, 2006
Revised Manuscript: August 21, 2006
Manuscript Accepted: August 22, 2006
Published: November 13, 2006

Citation
F. Seydou, Omar M. Ramahi, Ramani Duraiswami, and T. Seppänen, "Numerical computation of the Green’s function for two-dimensional finite-size photonic crystals of infinite length," Opt. Express 14, 11362-11371 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-23-11362


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. A. Asatryan, K. Busch, R. C. McPhedran, L.C. Botten, C. Martijn de Sterke, and N. A. Nicorovici, "Two-dimensional Green function and local density of states in photonic crystals consisting of a fnite number of cylinders of infnite length," Phys Rev. E 63046612 (2001) [CrossRef]
  2. E. Yablonovitch, "Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 8, 2059-2062 (1987) [CrossRef]
  3. G. Tayeb and D. Maystre, "Rigorous theoretical study of finite-size two-dimensional photonic crystals doped by microcavities," J. Opt. Soc. Am. A 14, 3323-32 (1997) [CrossRef]
  4. H. Ammari, N. B’reux and E. Bonnetier, "Analysis of the radiation properties of a planar antenna on a photonic crystal substrate," Math. Methods Appl. Sci. 24, 1021-1042 (2001) [CrossRef]
  5. A. Z. Elsherbeni and A. A. Kishk, "Modeling of cylindrical objects by circular dielectric and conducting cylinders," IEEE Trans. Antennas Propag 40, 96-99 (1992) [CrossRef]
  6. D. Colton and R. Kress, Integral Equation Methods in Scattering Theory (John Wiley, New York, 1983)
  7. R, Kress, Linear Integral Equations (New York: Springer-Verlag, 1989). [CrossRef]
  8. M.A. Haider, S.P. Shipman and S. Venakides, "Boundary-integral calculations of two-dimensional electromagnetic scattering in infinite photonic crystal slabs: Channel defects and resonances," SIAM Journal on Applied Mathematics 62, 2129-2148 (2002) [CrossRef]
  9. A. Garcia-Martin, D. Hermann, F. Hagmann, K. Busch and P. Wlfle, "Defect computations in photonic crystals: a solid state theoretical approach," Nanotechnology 14, 177-183 (2003) [CrossRef]
  10. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory (Springer Verlag, 1997)
  11. P.A. Martin, P. Ola, "Boundary integral equations for the scattering of electromagnetic waves by a homogeneous dielectric obstacle,"Proc. R. Soc. Edinb., Sect. A 123, 185-208 (1993) [CrossRef]
  12. R. Kress, "On the numerical solution of a hypersingular integral equation in scattering theory," J. Comp. Appl. Math. 61, 345-360 (1995) [CrossRef]
  13. W. Hackbusch, Multi-Grid Methods and Applications (Springer-Verlag, Berlin, 1985)
  14. J.M. Song and W.C. Chew, "FMM and MLFMA in 3D and Fast Illinois Solver Code," in Fast and Efficient Algorithms in Computational Electromagnetics, Chew, Jin, Michielssen, and Song, eds. (Norwood, MA: Artech House, 2001)
  15. A.A. Asatryan, K. Busch,R.C. McPhedran, L.C. Botten, C.M. de Sterke and N.A. Nicorovici, "Two-dimensional Green tensor and local density of states in finite-sized two-dimensional photonic crystals,"Waves RandomMedia 139-25 (2003) [CrossRef]
  16. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, 1995)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited