OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 23 — Nov. 13, 2006
  • pp: 11372–11384

LCAO approximation for scaling properties of the Menger sponge fractal

Kazuaki Sakoda  »View Author Affiliations

Optics Express, Vol. 14, Issue 23, pp. 11372-11384 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (437 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The electromagnetic eigenmodes of a three-dimensional fractal called the Menger sponge were analyzed by the LCAO (linear combination of atomic orbitals) approximation and a first-principle calculation based on the FDTD (finite-difference time-domain) method. Due to the localized nature of the eigenmodes, the LCAO approximation gives a good guiding principle to find scaled eigenfunctions and to observe the approximate self-similarity in the spectrum of the localized eigenmodes.

© 2006 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(260.2110) Physical optics : Electromagnetic optics
(260.3910) Physical optics : Metal optics

ToC Category:
Physical Optics

Original Manuscript: August 24, 2006
Revised Manuscript: October 19, 2006
Manuscript Accepted: October 21, 2006
Published: November 13, 2006

Kazuaki Sakoda, "LCAO approximation for scaling properties of the Menger sponge fractal," Opt. Express 14, 11372-11384 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman & Company, San Francisco, 1982).
  2. J. Feder, Fractals (Plenum Press, New York, 1988).
  3. X. Sun and D. L. Jaggard, "Wave interactions with generalized Cantor bar fractal multilayers," J. Appl. Phys. 70, 2500-2507 (1991). [CrossRef]
  4. M. Bertolotti, P. Masciulli, and C. Sibilia, "Spectral transmission properties of a self-similar optical Fabry-Perot resonator," Opt. Lett. 19, 777-779 (1994). [CrossRef] [PubMed]
  5. S. Alexander and R. Orbach, "Density of states on fractals-fractons," J. Phys. (Paris), Lett. 43, L625-L631 (1982). [CrossRef]
  6. J. W. Kantelhardt, A. Bunde, and L. Schweitzer, "Extended fractons and localized phonons on percolation clusters," Phys. Rev. Lett. 81, 4907-4910 (1998). [CrossRef]
  7. W. J. Wen, L. Zhou, J.S. Li,W. K. Ge, C. T. Chan, and P. Sheng, "Subwavelength photonic band gaps from planar fractals," Phys. Rev. Lett. 89, Art. No. 223901 (2002). [CrossRef] [PubMed]
  8. M. Wada-Takeda, S. Kirihara, Y. Miyamoto, K. Sakoda, and K. Honda, "Localization of electromagnetic waves in three-dimensional photonic fractal cavities," Phys. Rev. Lett. 92, Art. No. 093902 (2004).
  9. K. Sakoda, "Electromagnetic eigenmodes of a three-dimensional photonic fractal," Phys. Rev. B 72, Art. No. 184201 (2005). [CrossRef]
  10. K. Sakoda, "90-degree light scattering by the Menger sponge fractal," Opt. Express 13, 9585 (2005). [CrossRef] [PubMed]
  11. K. Sakoda, "Localized electromagnetic eigenmodes in three-dimensional metallic photonic fractals," Laser Phys. 16897-901 (2006). [CrossRef]
  12. K. Sakoda, S. Kirihara, Y. Miyamoto,M. Wada-Takeda, and K. Honda, "Light scattering and transmission spectra of the Menger sponge," Appl. Phys. B,  81, 321-324 (2005). [CrossRef]
  13. T. Inui, Y. Tanabe, and Y. Onodera, Group Theory and Its Applications in Physics (Springer-Verlag, Berlin 1990). [CrossRef]
  14. K. Sakoda and H. Shiroma, "Numerical method for localized defect modes in photonic lattices," Phys. Rev. B 56, 4830-4835 (1997). [CrossRef]
  15. K. Sakoda, Optical Properties of Photonic Crystals, 2nd Ed., (Springer-Verlag, Berlin, 2004) Chap. 6.
  16. See for example A. Taflove, Computational Electrodynamics (Artech House, Boston, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited