OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 23 — Nov. 13, 2006
  • pp: 11442–11452

Looking into the volcano with a Mid-IR DFB diode laser and Cavity Enhanced Absorption Spectroscopy

S. Kassi, M. Chenevier, L. Gianfrani, A. Salhi, Y. Rouillard, A. Ouvrard, and D. Romanini  »View Author Affiliations


Optics Express, Vol. 14, Issue 23, pp. 11442-11452 (2006)
http://dx.doi.org/10.1364/OE.14.011442


View Full Text Article

Acrobat PDF (255 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the first application of extended–wavelength DFB diode lasers to Cavity–Enhanced Absorption Spectroscopy in-situ trace measurements on geothermal gases. The emission from the most active fumarole at the Solfatara volcano near Naples (Italy) was probed for the presence of CO and CH4. After passing through a gas dryer and cooler, the volcanic gas flow (98% CO2) was analysed in real time for the concentration of these species, whose relatively strong absorption lines could be monitored simultaneously by a single Distributed Feed–Back (DFB) GaSb–based diode laser emitting around 2.33 μm (4300 cm−1) at room temperature. The concentrations were found to be about 3 ppm and 75 ppm, respectively, while actual detection limits for these molecules are around 1 ppb. We discuss the possibility of detecting other species of interest for volcanic emission monitoring.

© 2006 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(230.5750) Optical devices : Resonators
(300.1030) Spectroscopy : Absorption

ToC Category:
Spectroscopy

History
Original Manuscript: August 4, 2006
Revised Manuscript: September 14, 2006
Manuscript Accepted: September 14, 2006
Published: November 13, 2006

Citation
S. Kassi, M. Chenevier, L. Gianfrani, A. Salhi, Y. Rouillard, A. Ouvrard, and D. Romanini, "Looking into the volcano with a Mid-IR DFB diode laser and Cavity Enhanced Absorption Spectroscopy," Opt. Express 14, 11442-11452 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-23-11442


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. K. Notsu, T. Mori, G. Igarashi, Y. Tohjima, and H. Wakita, "Infrared spectral radiometer: A new tool for remote measurement of SO2 of volcanic gas," Geochem. J. 27, 361 (1993).
  2. P. Allard, A. Maiorani, D. Tedesco, G. Cortecci, and B. Turi, "Isotopic study of the origin of sufur and carbon in Solfatara fumaroles, Campi Flegrei caldera," J. Volcanol. Geotherm. Res. 48, 139 (1991). [CrossRef]
  3. J. Fiebig, G. Chiodini, S. Caliro, A. Rizzo, J. Spangenberg, and J. Hunziker, "Chemical and isotopic equilibrium between CO2 and CH4 in fumarolic gas discharges: Generation of CH4 in arc magmatic-hydrothermal systems," Geochimica et Cosmochimica Acta 68, 2321 (2004). [CrossRef]
  4. D. Tedesco and J. C. Sabroux, "The determination of deep temperatures by means of the CO-CO2-H2-H2O geothermometer: an example using fumaroles in the Campi Flegrei, Italy," Bull. Volcanol. 49, 381 (1987). [CrossRef]
  5. G. De Natale, P. De Natale, P. Ferraro, and L. Gianfrani, "Optical methods in Earth Sciences," Opt. Lasers Eng. 37, 87 (2002). [CrossRef]
  6. T. Mori and K. Notsu, "Remote CO, COS, CO2, SO2, and HCl detection and temperature estimation of volcanic gas," Geophys. Res. Lett. 24, 2047 (1997). [CrossRef]
  7. P. Francis, M. R. Burton, and C. Oppenheimer, "Remote measurements of volcanic gas compositions by solar occultation spectroscopy," Nature 396, 567 (1998). [CrossRef]
  8. A. Rocco, G. De Natale, P. De Natale, G. Gagliardi, and L. Gianfrani, "A diode-laser-based spectrometer for in-situ measurements of volcanic gases," Appl. Phys. B 78, 235 (2004). [CrossRef]
  9. A. Castrillo, G. Casa, M. V. Burgel, D. Tedesco, and L. Gianfrani, "First field determination of the 13C/12C isotope ratio in volcanic CO2 by diode-laser spectrometry," Opt. Express 12, 6515 (2004). [CrossRef]
  10. B. Dahmani, L. Hollberg, and R. Drullinger, "Frequency stabilization of semiconductor lasers by resonant optical feedback," Opt. Lett. 12, 876 (1987).
  11. PH. Laurent, A. Clairon, and CH. Bréant, "Frequency noise analysis of optically self-locked diode lasers," IEEE J. Quantum Electron. 25, 1131 (1989). [CrossRef]
  12. J. Morville, S. Kassi, M. Chenevier, and D. Romanini, "Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking," Appl. Phys. B 80, 1027-1038 (2005). [CrossRef]
  13. D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, "Optical-feedback cavity-enhanced absorption: A compact spectrometer for real-time measurement of atmospheric methane," Appl. Phys. B 83, 659-667 (2006). [CrossRef]
  14. A. Salhi, A. Vicet, Y. Rouillard, A. Garnache, D. Barat, R. Werner, and J. Koeth, "Type I quantum well Sb-based Distributed Feedback laser diodes emitting near 2.4μm," in Sixth International Conference on Mid-Infrared Optoelectronics Materials and Devices (MIOMD VI) (June 28-July 1 2004, St Petersburg, Russia, 2004).
  15. A. Salhi, D. Barat, D. Romanini, Y. Rouillard, A. Ouvrard, R. Werner, J. Seufert, J. Koeth, A. Vicet, and A. Garnache, "Single-frequency Sb-based distributed-feedback lasers emitting at 2.3μm above room temperature for application in tunable diode laser absorption spectroscopy," Appl. Opt. 45, 4957-4965 (2006). [CrossRef]
  16. E. R. T. Kerstel, R. Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, and D. Romanini, "AWater Isotope (2H, 17O, and 18O) Spectrometer based on Optical-Feedback Cavity Enhanced Absorption For In-situ Airborne Applications," Appl. Phys. Baccepted (2006).
  17. I. Courtillot, J. Morville, V. Motto-Ros, and D. Romanini, "Sub-ppb NO2 detection by Optical-Feedback Cavity-Enhanced Absorption Spectroscopy with a blue diode laser," Appl. Phys. BAccepted (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited