OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 23 — Nov. 13, 2006
  • pp: 11453–11459

Femtosecond gain and index dynamics in an InAs/InGaAsP quantum dot amplifier operating at 1.55 µm

Aaron J. Zilkie, Joachim Meier, Peter W. E. Smith, Mo Mojahedi, J. Stewart Aitchison, Philip J. Poole, Claudine Nì. Allen, Pedro Barrios, and Daniel Poitras  »View Author Affiliations


Optics Express, Vol. 14, Issue 23, pp. 11453-11459 (2006)
http://dx.doi.org/10.1364/OE.14.011453


View Full Text Article

Enhanced HTML    Acrobat PDF (266 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the characterization of the ultrafast gain and refractive index dynamics of an InAs/InGaAsP self-assembled quantum dot semiconductor optical amplifier (SOA) operating at 1.55 µm through heterodyne pump-probe measurements with 150 fs resolution. The measurements show a 15 ps gain recovery time at a wavelength of 1560 nm, promising for ultrafast switching at >40 GHz in the important telecommunications wavelength bands. Ultrafast dynamics with 0.2-1.5 ps lifetimes were also found consistent with carrier heating and spectral hole burning. Comparing with previous reports on quantum dot SOAs at 1.1–1.3 µm wavelengths, we conclude that the carrier heating is caused by a combination of free-carrier absorption and stimulated transition processes.

© 2006 Optical Society of America

OCIS Codes
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(230.4320) Optical devices : Nonlinear optical devices
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

ToC Category:
Ultrafast Optics

History
Original Manuscript: July 21, 2006
Revised Manuscript: October 3, 2006
Manuscript Accepted: October 5, 2006
Published: November 13, 2006

Citation
Aaron J. Zilkie, Joachim Meier, Peter W. E. Smith, Mo Mojahedi, J. Stewart Aitchison, Philip J. Poole, Claudine Nì. Allen, Pedro Barrios, and Daniel Poitras, "Femtosecond gain and index dynamics in an InAs/InGaAsP quantum dot amplifier operating at 1.55 µm," Opt. Express 14, 11453-11459 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-23-11453


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, and Y. Nakata, "Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gbs(-1) directly modulated lasers and 40Gbs(-1) signal-regenerative amplifiers," J. Phys. D. Appl. Phys. 38, 2126-2134 (2005). [CrossRef]
  2. M. Sugawara, T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and H. Ishikawa, "Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gb/s and a new scheme of 3R regenerators," Meas. Sci. Technol. 13, 1683-1691 (2002). [CrossRef]
  3. T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, "Pattern-effect-free amplification and cross-gain modulation achieved by using ultrafast gain nonlinearity in quantum-dot semiconductor optical amplifiers," Phys. Status. Solidi. B 238, 301-304 (2003). [CrossRef]
  4. A. V. Uskov, E. P. O'Reilly, R. J. Manning, R. P. Webb, D. Cotter, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, "On ultrafast optical switching based on quantum-dot semiconductor optical amplifiers in nonlinear interferometers," IEEE Photonic Technol. Lett. 16, 1265-1267 (2004). [CrossRef]
  5. P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, M. H. Mao, and D. Bimberg, "Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers," IEEE J. Sel. Top. Quantum Electron. 6, 544-551 (2000). [CrossRef]
  6. P. Borri, S. Schneider, W. Langbein, U. Woggon, A. E. Zhukov, V. M. Ustinov, N. N. Ledentsov, Z. I. Alferov, D. Ouyang, and D. Bimberg, "Ultrafast carrier dynamics and dephasing in InAs quantum-dot amplifiers emitting near 1.3-um-wavelength at room temperature," Appl. Phys. Lett. 79, 2633-2635 (2001) [CrossRef]
  7. M. van der Poel, E. Gehrig, O. Hess, D. Birkedal, and J. M. Hvam, "Ultrafast gain dynamics in quantum-dot amplifiers: Theoretical analysis and experimental investigations," IEEE J. Quantum Elect. 41, 1115-1123 (2005). [CrossRef]
  8. J. Meier, M. Mojahedi, J. S. Aitchison, R. H. Wang, T. J. Rotter, C. Yang, A. Stintz, K. J. Malloy, "Gain recovery dynamics in InAs-quantum dash optical amplifiers operating at 1550nm," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2006 Technical Digest (Optical Society of America, Washington, DC, 2006), CThGG4.
  9. M. van der Poel, J. Mork, A. Somers, A. Forchel, J. P. Reithmaier, and G. Eisenstein, "Ultrafast gain and index dynamics of quantum dash structures emitting at 1.55µm," Appl. Phys. Lett. 89, 081102-1-3 (2006).
  10. J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, "InP based lasers and optical amplifiers with wire-/dot-like active regions," J. Phys. D Appl. Phys. 38, 2088-2102 (2005). [CrossRef]
  11. K. L. Hall, Y. Lai, E. P. Ippen, G. Eisenstein, and U. Koren, "Femtosecond Gain Dynamics and Saturation Behavior in InGaAsP Multiple Quantum-Well Optical Amplifiers," Appl. Phys. Lett. 57, 2888-2890 (1990). [CrossRef]
  12. S. Weiss, J. M. Wiesenfeld, D. S. Chemla, G. Raybon, G. Sucha, M. Wegener, G. Eisenstein, C. A. Burrus, A. G. Dentai, U. Koren, B. I. Miller, H. Temkin, R. A. Logan, and T. Tanbunek, "Carrier Capture Times in 1.5 um Multiple Quantum-Well Optical Amplifiers," Appl. Phys. Lett. 60, 9-11 (1992). [CrossRef]
  13. T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, "Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices," IEEE Photonic Technol. Lett. 13, 541-543 (2001). [CrossRef]
  14. C. N. Allen, P. J. Poole, P. Barrios, P. Marshall, G. Pakulski, S. Raymond, and S. Fafard, "External cavity quantum dot tunable laser through 1.55 µm," Physica E 26, 372-376 (2005). [CrossRef]
  15. E. W. Bogaart, R. Notzel, Q. Gong, J. E. M. Haverkort, and J. H. Wolter, "Ultrafast carrier capture at room temperature in InAs/InP quantum dots emitting in the 1.55 mu m wavelength region," Appl. Phys. Lett . 86, 173109-1-3 (2005). [CrossRef]
  16. H. Ju, J. M. Vazquez, Z. Li, R. Notzel, T. de Vries, D. Lenstra, Q. Gong, P. J. van Veldhoven, J. H. Wolter, G. D. Khoe, and H. J. S. Dorren, "Polarization-dependent carrier dynamics in a passive InAs/InP quantum dot waveguide," Opt. Commun. 259, 861-867 (2006). [CrossRef]
  17. K. L. Hall, G. Lenz, A. M. Darwish, and E. P. Ippen, "Subpicosecond Gain and Index Nonlinearities in InGaAsP Diode-Lasers," Opt. Commun. 111, 589-612 (1994). [CrossRef]
  18. A. J. Zilkie, J. Meier, P. W. E. Smith, M. Mojahedi, J. S. Aitchison, P. J. Poole, C. N. Allen, P. Barrios, and D. Poitras, "Characterization of the ultrafast carrier dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.55 μm," in Photonic Applications in Nonlinear Optics, Nanophotonics, and Microwave Photonics, R. A. Morandotti, H. E. Ruda, J. Yao, eds., Proc. SPIE 5971, 91-100 (2005).
  19. J. Mork, T. W. Berg, M. L. Nielsen, and A. V. Uskov, "The role of fast carrier dynamics in SOA based devices," IEICE Trans. Electron. E87C, 1126-1133 (2004).
  20. C. K. Sun, H. K. Choi, C. A. Wang, and J. G. Fujimoto, "Femtosecond Gain Dynamics in InGaAs/AlGaAs Strained-Layer Single-Quantum-Well Diode-Lasers," Appl. Phys. Lett. 63, 96-98 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited