OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 24 — Nov. 27, 2006
  • pp: 11585–11597

OCT-based elastography for large and small deformations

Sean J. Kirkpatrick, Ruikang K. Wang, and Donald D. Duncan  »View Author Affiliations

Optics Express, Vol. 14, Issue 24, pp. 11585-11597 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (577 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present two approaches to speckle tracking for optical coherence tomography (OCT)-based elastography, one appropriate for small speckle motions and the other for large, rapid speckle motions. Both approaches have certain advantages over traditional cross-correlation based motion algorithms. We apply our algorithms to quantifying the strain response of a mechanically inhomogeneous, bilayered polyvinyl alcohol tissue phantom that is subjected to either small or large dynamic compressive forces while being imaged with a spectral domain OCT system. In both the small and large deformation scenarios, the algorithms performed well, clearly identifying the two mechanically disparate regions of the phantom. The stiffness ratio between the two regions was estimated to be the same for the two scenarios and both estimates agreed with the expected stiffness ratio based on earlier mechanical testing. No single numerical approach is appropriate for all cases and the experimental conditions dictate the proper choice of speckle shift algorithm for OCT-based elastography studies.

© 2006 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(120.6150) Instrumentation, measurement, and metrology : Speckle imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: August 7, 2006
Revised Manuscript: October 20, 2006
Manuscript Accepted: November 13, 2006
Published: November 27, 2006

Virtual Issues
Vol. 1, Iss. 12 Virtual Journal for Biomedical Optics

Sean J. Kirkpatrick, Ruikang K. Wang, and Donald D. Duncan, "OCT-based elastography for large and small deformations," Opt. Express 14, 11585-11597 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Ophir, I. Cespedes, H, Ponnekanti, Y. Yadzi, and X. Li, "Elastography: a quantitative method for imaging the elasticity of biological tissues," Ultrason. Imaging 13, 111-134 (1991). [CrossRef] [PubMed]
  2. S. Srinivasan, F. Kallel, R. Souchon, and J. Ophir, "Analysis of an adaptive strain estimation technique in elastography," Ultrason. Imaging 24, 109-118 (2002). [PubMed]
  3. I. Cespedes, J. Ophir, H. Ponnekanti, and N. Maklad, "Elastography: Elasticity imaging using ultrasound with application to muscle and breast in vivo," Ultrason. Imaging 15, 73-88 (1993). [CrossRef] [PubMed]
  4. B. S. Garra, E. I. Cespedes, J. Ophir, S. R. Spratt, R. A. Zuurbier, C. M. Magnant, and M. Pennanen, "Elastography of breast lesions: Initial clinical results," Radiology 202, 79-86 (1997). [PubMed]
  5. T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, "Elastic moduli of breast and prostate tissues under compression," Ultrason. Imaging 20, 260-274 (1998).
  6. D. B. Plewes, J. Bishop, A. Samani, and J. Sciarretta, "Visualization and quantification of breast cancer biomechanical properties with magnetic resonance elastography," Phys. Med. Biol. 45, 1591-1610 (2000). [CrossRef] [PubMed]
  7. R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, D. Holz, "High-resolution tensor MR elastography for breast tumor detection," Phys. Med. Biol. 45, 1649-1664 (2000). [CrossRef] [PubMed]
  8. K. M. Hiltasky, M. Fruger, C. Starke, L. Heuser, H. Ermet, and A. Jensen, "Freehand ultrasound elastography of breast lesions: clinical results," Ultrasound Med. Biol. 27, 1461-1469 (2001). [CrossRef]
  9. J. Lorenzen,  et al. "MR elastography of the breast: preliminary clinical results," Rofo. Fortschr Geb. Rontgenstr. Neuen Bildgeb. Verfahr. 174, 830-834 (2002). [CrossRef] [PubMed]
  10. E. A. el-Gabry, E. J. Halpern, S. E. Strup, and L. G. Gomella, "Imaging prostate cancer: Current and future applications," Oncology 15, 325-336 (2001). [PubMed]
  11. D. L. Cochlin, R. H. Ganatra, and D. F. Griffiths, "Elastography in the detection of prostatic cancer," Clin. Radiol. 57, 1014-1020 (2002). [CrossRef] [PubMed]
  12. S. J. Kirkpatrick, and B. W. Brooks, "Micromechanical behavior of cortical bone as inferred from laser speckle data," J. Biomed. Mater. Res.,  39, 373-379 (1998). [CrossRef] [PubMed]
  13. S. L. Jacques, and S. J. Kirkpatrick, "Acoustically modulated speckle imaging of biological tissues," Opt. Lett. 23, 879-881 (1998). [CrossRef]
  14. S. J. Kirkpatrick, and M. J. Cipolla, "High resolution imaged laser speckle strain gauge for vascular applications," J. Biomed. Opt. 5, 62-71 (2000). [CrossRef] [PubMed]
  15. S. J. Kirkpatrick, M. T. Hinds, and D. D. Duncan, "Acousto-optical characterization of the viscoelastic nature of a nuchal elastin tissue scaffold," Tissue Eng. 9, 645-656 (2003). [CrossRef] [PubMed]
  16. S. J. Kirkpatrick, D. D. Duncan, and L. Fang, "Low-frequency surface wave propagation and the viscoelastic behavior of porcine skin," J. Biomed. Opt. 9, 1311-1319 (2004). [CrossRef] [PubMed]
  17. J. M. Schmitt, "OCT elastography: Imaging microscopic deformation and strain of tissue," Opt. Express 3, 199-211 (1998). [CrossRef] [PubMed]
  18. R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shiskkow, G. J. Tearney, M.R. Kaazempur-Mofrad, and B. E. Bouma, "OCT-based arterial elastography: Robust estimation exploiting tissue biomechanics," Opt. Express 12, 4558-4572 (2004). [CrossRef] [PubMed]
  19. A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. Kaazempur-Mofrad, "Tissue elasticity estimation with optical coherence elastography: Toward mechanical characterization of in vivo soft tissue," Ann. Biomed. Eng. 33, 1631-1639 (2005). [CrossRef] [PubMed]
  20. A. H. Chau, R. C. Chan, M. Shishkov, B. MacNeill, N. Iftima, G. J. Tearney, R. D. Kamm, B. E. Bouma, and Kaazempur-Mofrad, M.R. , "Mechanical analysis of atherosclerotic plaques based on optical coherence tomography," Ann Biomed. Eng. 32, 1494-1503 (2004). [CrossRef]
  21. J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, "Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues," Heart 90, 556-562 (2006). [CrossRef]
  22. H. Ko, W. Tan, R. Stack, and S. A. Boppart, "Optical coherence elastography of engineered and developing tissue," Tissue Engineering 12, 63-73 (2006). [CrossRef] [PubMed]
  23. D. D. Duncan, and S. J. Kirkpatrick, "Processing algorithms for tracking speckle shifts in optical elastography of biological tissues," J. Biomed. Opt. 6, 418-426 (2001). [CrossRef] [PubMed]
  24. D. D. Duncan, and S. J. Kirkpatrick, "Performance analysis of a maximum likelihood speckle motion estimator," Opt. Express 10, 927-941 (2002). [PubMed]
  25. B. Jähne, and Haußecker, Computer Vision and Applications: A Guide for Students and Practitioners (Academic Press, San Diego, 2000).
  26. Y. C. Fung, and P. Tong, Classical and Computational Solid Mechanics (World Scientific, Singapore, 2001).
  27. B. Jähne, Practical Handbook on Image Processing for Scientific Applications (CRC Press, Boca Raton, 1997).
  28. R. K. Wang, Z. Ma, and S. J. Kirkpatrick, "Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue," Appl. Phys. Lett. 89, 144103 (2006). [CrossRef]
  29. Z. P. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. vanGemert and J. S. Nelson, "Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography," Opt. Lett. 22, 1119-1121 (1997). [CrossRef] [PubMed]
  30. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography," Opt. Express 11,3490-3497 (2003). [CrossRef] [PubMed]
  31. M. A. Choma, M. V. Sarunic, C. Yang, and J. Izzat, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). [CrossRef] [PubMed]
  32. R. K. Wang and Z. H. Ma, "A practical approach to eliminate the autocorrelation noise for volume rate spectral domain optical coherence tomography," Phys. Med. Biol. 51, 3231-3239 (2006). [CrossRef] [PubMed]
  33. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, "High-speed phase- and group-delay scanning with a grating-based phase control delay line," Opt. Lett. 22,1811-1813 (1997). [CrossRef]
  34. C. U. Devi, R. M. Vasu, and A. K. Sood, "Design, fabrication, and characterization of a tissue-equivalent phantom for optical elastography," J. Biomed. Opt. 10, 044020 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (3700 KB)     
» Media 2: AVI (2848 KB)     
» Media 3: AVI (2312 KB)     
» Media 4: AVI (9230 KB)     
» Media 5: AVI (1746 KB)     
» Media 6: AVI (2362 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited