OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 24 — Nov. 27, 2006
  • pp: 11608–11615

Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry

J. Y. Lee and D. Y. Kim  »View Author Affiliations


Optics Express, Vol. 14, Issue 24, pp. 11608-11615 (2006)
http://dx.doi.org/10.1364/OE.14.011608


View Full Text Article

Enhanced HTML    Acrobat PDF (158 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a versatile and accurate chromatic dispersion measurement method for single mode optical fibers over a wide spectral range (200 nm) using a spectral domain white light interferometer. This technique is based on spectral interferometry with a Mach-Zehnder interferometer setup and a broad band light source. It takes less than a second to obtain a spectral interferogram for a few tens of centimeter length fiber sample. We have demonstrated that the relative group velocity, the chromatic dispersion and the dispersion slope of a sample fiber can be obtained very accurately regardless of the zero-dispersion wavelength (ZDW) of a sample after frequency dependent optical phase was directly retrieved from a spectral interferogram. The measured results with our proposed method were compared with those obtained with a conventional time-domain dispersion measurement method. A good agreement between those results indicates that our proposed method can measure the chromatic dispersion of a short length optical fiber with very high accuracy.

© 2006 Optical Society of America

OCIS Codes
(060.2300) Fiber optics and optical communications : Fiber measurements
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(260.2030) Physical optics : Dispersion

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: August 30, 2006
Revised Manuscript: November 15, 2006
Manuscript Accepted: November 16, 2006
Published: November 27, 2006

Citation
Ji Yong Lee and Dug Young Kim, "Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry," Opt. Express 14, 11608-11615 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-24-11608


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Diddams and J. C. Diels, "Dispersion measurements with white light interferometry," J. Opt. Soc. Am. B 13, 1120-1129 (1996). [CrossRef]
  2. C. Peucheret, F. Lin, and R. J. S. Pedersen, "Measurement of small dispersion values in optical components [WDM networks]," Electron. Lett. 35, 409-410 (1999). [CrossRef]
  3. L. G Cohen, "Comparison of single-mode fiber dispersion measurement techniques," J. Lightwave Technol. 3, 958 -966 (1985). [CrossRef]
  4. J. Brendel, H. Zbinden, and N. Gision, "Measurement of chromatic dispersion in optical fibers using pairs of correlated photons," Opt. Commun. 151, 35-39 (1998). [CrossRef]
  5. K. Takada, T. Kitagawa, K. Hattori, M. Yamada, M. Horiguchi, and R. K. Hickernell, "Direct dispersion measurement of highly-erbium-doped optical amplifiers using a low coherence reflectometer coupled with dispersive Fourier spectroscopy," Electron. Lett. 28, 889-890 (1992). [CrossRef]
  6. D. D Shellee and K. B. Rochford, "Low-coherence interferometric measurements of the dispersion of multiple fiber bragg gratings," IEEE Photon. Technol. Lett. 13, 230-232 (2001). [CrossRef]
  7. J. Gehler and W. Spahn, "Dispersion measurement of arrayed-waveguide grating by Fourier transform spectroscopy," Electron. Lett. 36,338-340 (2000). [CrossRef]
  8. R. Cella and W. Wood, "Measurement of chromatic dispersion in erbium doped fiber using low coherence interferometry," Proceedings of the Sixth Optical Fibre Measurement Conference, 207-210 (2001)
  9. J. Tignon, M. V Marquezini, T. Hasch, and D. S. Chemals, "Spectral interferometry of semiconductor nanostructures," IEEE J. Quantum Electron. 35,510-522 (1999). [CrossRef]
  10. A. Wax, C. Yang, and J. A. Izatt, "Fourier-domain low-coherence interferometry for light-scattering spectroscopy," Opt. Lett. 28,1230-1232 (2003). [CrossRef] [PubMed]
  11. P. Hlubina, T. Martynkien, and W. Urbañczyk, "Dispersion of group and phase modal birefringence in elliptical-core fiber measured by white-light spectral interferometry," Opt. Express 11, 2793-2798 (2003). [PubMed]
  12. P. Hlubina, "White-light spectral interferometry to measure intermodal dispersion in two-mode elliptical-core optical fibers," Opt. Commun. 218, 283-289 (2003). [CrossRef]
  13. A. B. Vakhtin, K. A. Peterson, W. R Wood, and D. J. Kane, "Differential spectal interferometery and imaging technique for biomedical applications," Opt. Lett. 28, 1332-1334 (2003). [CrossRef] [PubMed]
  14. R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, "Ultra high resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004). [CrossRef] [PubMed]
  15. D. Huang, E. A Swang, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang. M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  16. K. Takada, I. Yokohama, K. Chida, and J. Noda, "New measurement system for fault location in optical waveguide devices based on an interfermetric technique," Appl. Opt. 26, 1603-1605 (1987). [CrossRef] [PubMed]
  17. C. D. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, "Spectral resolution and sampling in Fourier transform spectral interferometry," J. Opt. Soc. Am. B 17, 1795-1802 (2000). [CrossRef]
  18. D. Hammer, A. Welch, G. Noojin, R. Thomas, D. Stolarski, and B. Rockwell, "Spectrally resolved white-light interferometry for measurement of ocular dispersion," J. Opt. Soc. Am. A 16, 2092-2102 (1999). [CrossRef]
  19. V. N. Kumer and D. N. Rao, "Using interference in the frequency domain for precise determination of thickness and refractive indices of normal dispersive material," J. Opt. Soc. Am. B 12, 1559-1563 (1995). [CrossRef]
  20. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of Intraocular Distances by Backscattering Spectral Interferometry," Opt. Commun. 117, 43-48 (1995). [CrossRef]
  21. G. Häusler and M. W. Lindner, ""Coherence Radar" and "Spectral Radar"—New tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998). [CrossRef]
  22. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). [CrossRef] [PubMed]
  23. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002). [CrossRef]
  24. P. Merritt, R. P. Tatam, and D. A. Jacson, "Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber," J. Lightwave Technol. 7, 703-716 (1989). [CrossRef]
  25. M. Galli, F. Marabelli, and G. Guizzetti, "Direct measurement of refractive-index dispersion of transparent media by white-light inerferometry," Appl. Opt. 42. 3910-3914 (2003). [CrossRef] [PubMed]
  26. R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited