OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 24 — Nov. 27, 2006
  • pp: 11631–11652

Numerical calculations of ARROW structures by pseudospectral approach with Mur’s absorbing boundary conditions

Chia-Chien Huang  »View Author Affiliations

Optics Express, Vol. 14, Issue 24, pp. 11631-11652 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (760 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The pseudospectral method, proposed in our previous work, has not yet been constructed for optical waveguides with leaky modes or anisotropic materials. Our present study focuses on antiresonant reflecting optical waveguides (ARROWS) made by anisotropic materials. In contrast to the fields in the outermost subdomain expanded by Laguerre-Gaussian functions for guided mode problems, the fields in the high-index outermost subdomain are expanded by the Chebyshev polynomials with Mur’s absorbing boundary condition (ABC). Accordingly, the traveling waves can leak freely out of the computational window, and the desirable properties of the pseudospectral scheme, i.e., provision of fast and accurate solutions, can be preserved. A number of numerical examples tested by the present approach are shown to be in good agreement with exact data and published results achieved by other numerical methods.

© 2006 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7390) Optical devices : Waveguides, planar

ToC Category:
Integrated Optics

Original Manuscript: September 18, 2006
Revised Manuscript: October 23, 2006
Manuscript Accepted: October 31, 2006
Published: November 27, 2006

Chia-Chien Huang, "Numerical calculations of ARROW structures by pseudospectral approach with Mur’s absorbing boundary conditions," Opt. Express 14, 11631-11652 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett. 49, 13-15 (1986). [CrossRef]
  2. T. Baba, Y. Kokubun, T. Sakaki, and K. Iga, "Loss reduction of an ARROW waveguide in shorter wavelength and its stack configuration," J. Lightwave Technol. 6, 1440-1445 (1988). [CrossRef]
  3. M. Mann, U. Trutschel, C. Wachter, L. Leine, and F. Lederer, "Directional coupler based on antiresonant reflecting optical waveguide," Opt. Lett. 16, 805-807 (1991). [CrossRef] [PubMed]
  4. Z. M. Mao and W. P. Huang, "An ARROW optical wavelength filter: design and analysis," J. Lightwave Technol. 11, 1183-1188 (1992). [CrossRef]
  5. F. Prieto, A. Llobera, D. Jimenez, C. Domenguez, A. Calle, and L. M. Lechuga, "Design and analysis of silicon antiresonant reflecting optical waveguides for evanescent field sensor," J. Lightwave Technol. 18, 966-972 (2000). [CrossRef]
  6. T. Baba and Y. Kokubun, "Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expressions," IEEE J. Quantum Electron. 28, 1689-1700 (1992). [CrossRef]
  7. W. P. Huang, R. M. Shubair, A. Nathan, and Y. L. Chow, "The modal characteristics of ARROW structures," J. Lightwave Technol. 10, 1015-1022 (1992). [CrossRef]
  8. T. Baba and Y. Kokubun, "New polarization-insensitive antiresonant reflecting optical waveguide (ARROW-B)," IEEE Photon. Technol. Lett. 1, 232-234 (1989). [CrossRef]
  9. W. Jiang, J. Chrostowski, and M. Fontaine, "Analysis of ARROW waveguides," Opt. Commun. 72, 180-186 (1989). [CrossRef]
  10. J. Chilwell and I. Hodgkinson, "Thin-film field-transfer matrix theory for planar multilayer waveguides and reflection from prism-loaded waveguides," J. Opt. Soc. Am. A 1, 742-753 (1984). [CrossRef]
  11. J. Kubica, D. Uttamchandani, and B. Culshaw, "Modal propagation within ARROW waveguides," Opt. Commun. 78, 133-136 (1990). [CrossRef]
  12. J. M. Kubica, "Numerical analysis of InP/InGaAsP ARROW waveguides using transfer matrix approach," J. Lightwave Technol. 10, 767-771 (1992). [CrossRef]
  13. E. Anemogiannis and E. N. Glytsis, "Multilayer waveguides: efficient numerical analysis of general structures," J. Lightwave Technol. 10, 1344-1351 (1992). [CrossRef]
  14. C. K. Chen, P. Berini, D. Feng, S. Tanev, and V. P. Tzolov, "Efficient and accurate numerical analysis of multilayer planar waveguides in lossy anisotropic media," Opt. Express 7, 260-272 (2000). [CrossRef] [PubMed]
  15. W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, "The perfectly matched layer boundary conditions for modal analysis of optical waveguides: leaky mode calculations," IEEE Photon. Technol. Lett. 8, 652-654 (1996). [CrossRef]
  16. J. C. Grant, J. C. Beal, and N. J. P. Frenette, "Finite element analysis of the ARROW leaky optical waveguide," IEEE J. Quantum Electron. 30, 1250-1253 (1994). [CrossRef]
  17. H. P. Uranus, H. J. W. M. Hoekstra, and E. V. Groesen, "Simple high-order Galerkin finite scheme for the investigation of both guided and leaky modes in anisotropic planar waveguides," Opt. Quantum Electron. 36, 239-257 (2004). [CrossRef]
  18. Y. Tsuji and M. Koshiba, "Guided-mode and leaky-mode analysis by imaginary distance beam propagation method based on finite element scheme," J. Lightwave Technol. 18, 618-623 (2000). [CrossRef]
  19. J. P. Boyd, "Chebyshev and Fourier Spectral methods," in Lecture Notes in Engineering, 2nd ed. (Springer Verlag, 2001).
  20. C. C. Huang, C. C. Huang, and J. Y. Yang, "An efficient method for computing optical waveguides with discontinuous refractive index profiles using spectral collocation method with domain decomposition," J. Lightwave Technol. 21, 2284-2296 (2003). [CrossRef]
  21. C. C. Huang, C. C. Huang, and J. Y. Yang, "A full-vectorial pseudospectral modal analysis of dielectric optical waveguides with stepped refractive index profiles," IEEE J. Sel. Top. Quantum Electron. 11, 457-465 (2005). [CrossRef]
  22. C. C. Huang and C. C. Huang, "An efficient and accurate semivectorial spectral collocation method for analyzing polarized modes of rib waveguides," J. Lightwave Technol. 23, 2309-2317 (2005). [CrossRef]
  23. G. Mur, "Absorbing boundary conditions for the finite difference approximation of the time-domain electromagnetic field equations," IEEE Trans. Electromagn. Compat. 23, 377-382 (1981). [CrossRef]
  24. A. Hardy and W. Streifer, "Coupled mode theory of parallel waveguides," J. Lightwave Technol. 3, 1135-1146 (1985). [CrossRef]
  25. M. Mann, U. Trutschel, C. Wachter, L. Leine, and F. Lederer, "Directional coupler based on an antiresonant reflecting optical waveguide," Opt. Lett. 16, 805-807 (1991). [CrossRef] [PubMed]
  26. Y. H. Chen and Y. T. Huang, "Coupling-efficiency analysis and control of dual antiresonant reflecting optical waveguides," J. Lightwave Technol. 14, 1507-1513 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited