OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 24 — Nov. 27, 2006
  • pp: 11653–11659

Diode-pumped efficient Tm,Ho:GdVO4 laser with near-diffraction limited beam quality

Wan-Jun He, Bao-Quan Yao, You-Lun Ju, and Yue-Zhu Wang  »View Author Affiliations

Optics Express, Vol. 14, Issue 24, pp. 11653-11659 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (180 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A diode-pumped efficient 2.05-µm Tm,Ho:GdVO4 laser with high beam quality is reported. The cavity configuration was optimized for weakening influence of thermal effect to resonator stability and mode-coupling. A conversion efficiency of 46% and a slope efficiency of 50% were obtained with continuous-wave (CW) output power of 10.5 W at 77 K. A repetitively Q-switched laser also achieved 10.1 W of output power at 10 kHz. A beam quality factor of M2<1.1 was measured by the traveling knife-edge method. In addition, the energy per pulse of 1.9 mJ was obtained at 5 kHz, corresponding to the peak power of 0.14 MW.

© 2006 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 2, 2006
Revised Manuscript: November 7, 2006
Manuscript Accepted: November 9, 2006
Published: November 27, 2006

Wan-Jun He, Bao-Quan Yao, You-Lun Ju, and Yue-Zhu Wang, "Diode-pumped efficient Tm,Ho:GdVO4 laser with near-diffraction limited beam quality," Opt. Express 14, 11653-11659 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. A. Budni, L. A. Pomeranz, M. L. Lemons, P. G. Schunemann, T. M. Pollak, and E. P. Chicklis, "10 W mid-IR Holmium pumped ZnGeP2 OPO," Advanced Solid State Lasers 19, 226-229 (1998).
  2. S. Haidar, K. Miyamoto, and H. Ito, "Generation of tunable mid-IR (5.5-9.3 μm) from a 2-μm pumped ZnGeP2 optical parametric oscillator," Opt. Commun. 241, 173-178 (2004). [CrossRef]
  3. S. Chandra, M. Wager, B. Clayton, A. Geiser, T. H. Allik, J. L. Ahl, C. Miller, P. Budni, P. Ketteridge, K. Lanier, E. Chicklis, J. A. Hutchinson, and W. W. Hovis, "2-micron pumped 8-12 micron OPO source for remote chemical sensing," Proc. SPIE. 4036, 200-208 (2000). [CrossRef]
  4. H. Hemmati, "2.07-μm cw diode-laser-pumped Tm,Ho:YLiF4 room-temperature laser," Opt. Lett. 14, 435-437 (1989). [CrossRef] [PubMed]
  5. P. A. Budni, M. G. Knights, E. P. Chicklis, and H. P. Jenssen, "Performance of a diode-pumped high PRF Tm,Ho:YLF laser," IEEE J. Quantum Electron. 28, 1029-1032 (1992). [CrossRef]
  6. I. F. Elder, and M. J. P. Payne, "Lasing in diode-pumped Tm:YAP, Tm,Ho:YAP and Tm,Ho:YLF," Opt. Commun. 145, 329-339 (1998). [CrossRef]
  7. F. Cornacchia, E. Sani, A. Toncelli, M. Tonelli, M. Marano, S. Taccheo, G. Galzerano, and P. Laporta, "Optical spectroscopy and diode-pumped laser characteristics of codoped Tm-Ho:YLF and Tm-Ho:BaYF: a comparative analysis," Appl. Phys. B 75, 817-822 (2002). [CrossRef]
  8. P. J. Morris, W. Lüthy, H. P. Weber, Y. D. Zavartsev, P. A. Studenikin, I. Shcherbakov, and A. I. Zagumenyi, "Laser operation and spectroscopy of Tm:Ho:GdVO4," Opt. Commun. 111, 493-496 (1994). [CrossRef]
  9. A. Sato, K. Asai, and K. Mizutani, "Lasing characteristics and optimizations of a diode-side-pumped Tm,Ho:GdVO4 laser," Opt. Lett. 29, 836-838 (2004). [CrossRef] [PubMed]
  10. K. S. Lai, P. B. Phua, R. F. Wu, Y. L. Lim, E. Lau, S. W. Toh, B. T. Toh, and A. Chng, "120-W continuous-wave diode-pumped Tm:YAG laser," Opt. Lett. 25, 1591-1593 (2000). [CrossRef]
  11. P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, "High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers," IEEE J. Selected Topics Quantum Electron. 6, 629-635 (2000). [CrossRef]
  12. C. Bollig, R. A. Hayward, W. A. Clarkson, and D. C. Hanna, "2-W Ho:YAG laser intracavity pumped by a diode-pumped Tm:YAG laser," Opt. Lett. 23, 1757-1759 (1998). [CrossRef]
  13. D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, "Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser," Appl. Phys. B 79, 559-561 (2004). [CrossRef]
  14. E. Sani, A. Toncelli, M. Tonelli, N. Coluccelli, G. Galzerano, and P. Laporta, "Comparative analysis of Tm-Ho:KYF4 laser crystals," Appl. Phys. B 81, 847-851 (2005). [CrossRef]
  15. J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzar, and M. Petros, "1 J/pulse Q-switched 2 μm solid-state laser," Opt. Lett. 31, 462-464 (2006). [CrossRef] [PubMed]
  16. M. E. Storm, "Holmium YLF amplifier performance and the prospects for multi-joule energies using diode-laser pumping," IEEE J. Quantum Electron. 29, 440-451 (1993). [CrossRef]
  17. D. A. Rockwell, "A review of phase-conjugate solid-state lasers," IEEE J. Quantum Electron. 24, 1124-1140 (1988). [CrossRef]
  18. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, "Thermal modeling of continuous-wave end-pumped solid-state lasers," Appl. Phys. Lett. 56, 1831-1833 (1990). [CrossRef]
  19. B. Neuenschwander, R. Weber, and H. P. Weber, "Determination of the thermal lens in solid-state lasers with stable cavities," IEEE J. Quantum Electron. 31, 1082-1087 (1995). [CrossRef]
  20. T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, "Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG," IEEE J. Quamtum Electron. 24, 924-933 (1988). [CrossRef]
  21. J. M. Khosrofian, and B. A. Garetz, "Measurement of a Gaussian laser beam diameter through the direct inversion of a knife-edge data," Appl. Opt. 22, 3406-3410 (1983). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited