OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 24 — Nov. 27, 2006
  • pp: 11660–11667

Microfluidic tuning of distributed feedback quantum cascade lasers

L. Diehl, B.G. Lee, P. Behroozi, M. Lončar, M.A. Belkin, Federico Capasso, T. Aellen, D. Hofstetter, M. Beck, and J. Faist  »View Author Affiliations


Optics Express, Vol. 14, Issue 24, pp. 11660-11667 (2006)
http://dx.doi.org/10.1364/OE.14.011660


View Full Text Article

Enhanced HTML    Acrobat PDF (439 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this Letter, we report the tuning of the emission wavelength of a single mode distributed feedback quantum cascade laser by modifying the mode effective refractive index using fluids. A fabrication procedure to encapsulate the devices in polymers for microfluidic delivery is also presented. The integration of microfluidics with semiconductor laser (optofluidics) is promising for new compact and portable lab-on-a-chip applications.

© 2006 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(280.3420) Remote sensing and sensors : Laser sensors

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 14, 2006
Revised Manuscript: November 7, 2006
Manuscript Accepted: November 9, 2006
Published: November 27, 2006

Virtual Issues
Vol. 1, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Laurent Diehl, Benjamin G. Lee, Peter Behroozi, Marko Loncar, Mikhail Belkin, Federico Capasso, Thierry Aellen, Daniel Hofstetter, Matthias Beck, and Jerome Faist, "Microfluidic tuning of distributed feedback quantum cascade lasers," Opt. Express 14, 11660-11667 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-24-11660


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Capasso, C. Gmachl, D.L. Sivco, and A.Y. Cho, "Quantum Cascade Lasers," Physics Today 55, 34 (2002) [CrossRef]
  2. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini and H. Melchior, "Continuous-wave operation of a mid-infrared semiconductor laser at room-temperature," Science 295301 (2002) [CrossRef] [PubMed]
  3. A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, "Quantum-cascade lasers operating in continuous-wave mode above 90ºC at lamda~5.25 μm," Appl. Phys. Lett. 88, 51105 (2006) [CrossRef]
  4. L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Lončar, M. Troccoli and F. Capasso, "High-power quantum cascade lasers grown by low-pressure metalorganic vapor-phase epitaxy operating in continuous wave above 400 K," Appl. Phys. Lett. 88, 201115 (2006) [CrossRef]
  5. R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, "External cavity quantum-cascade lasers tunable from 8.2 to 10.4 um using a gain element with a heterogeneous cascade," Appl. Phys. Lett. 88, 201113 (2006) [CrossRef]
  6. C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D.L. Sivco A.M. Sergent and A.Y. Cho, "Single-mode, tunable distributed feedback and multiple wavelength quantum cascade lasers," IEEE J. Quantum Electron. 38, 569 (2002). [CrossRef]
  7. A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, "Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies," Appl. Phys. Lett. 89, 141116 (2006). [CrossRef]
  8. S. Song, S.S. Howard, Z. Liu, A.O. Dirisu, C.F. Gmachl and C.B. Craig, "Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass cladding," Appl. Phys. Lett. 89, 41115 (2006). [CrossRef]
  9. A. Kosterev and F. Tittel, "Chemical sensors based on quantum cascade lasers," IEEE J. Quantum Electron. 38, 582 (2002). [CrossRef]
  10. C. Charlton, F. de Melas, A. Inberg, N. Croitoru, and B. Mizaikoff, "Hollow-waveguide gas sensing with room-temperature quantum cascade lasers," IEE Proc. Optoelectron. 150, 306 (2003) [CrossRef]
  11. J.Z. Chen, Z. Liu, C.F. Gmachl and D.L. Sivco, "Silver halide fiber-based evanescent-wave liquid droplet sensing with room temperature mid-infrared quantum cascade lasers," Opt. Express 13, 5953 (2005) [CrossRef] [PubMed]
  12. B. Lendl, J. Frank, R. Schindler, A. Müller, M. Beck, and J. Faist, "Mid-infrared quantum cascade lasers for flow injection analysis," Anal. Chem. 72, 1645 (2000) [CrossRef] [PubMed]
  13. J.Z. Chen, Z. Liu, Y.S. Rumala, D.L. Sivco, and C. Gmachl, "Direct cooling of room-temperature operated quantum cascade lasers," Electron. Lett. 42, 534 (2005) [CrossRef]
  14. M. Lončar, A. Scherer and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648 (2003). [CrossRef]
  15. D. Hofstetter, T. Aellen, M. Beck, and J. Faist, "High average power first-order distributed feedback quantum cascade lasers," IEEE Photon. Technol. Lett. 12, 1610 (2000) [CrossRef]
  16. G.M. Whistesides, E. Ostuni, S. Takayama, X. Jiang and D.E. Ingberg, "Soft Lithography in Biology and Biochemistry," Annu. Rev. Biomed. Eng. 73, 335 (2001)
  17. Note that refractive indexes mentioned throughout this Letter correspond to the values known typically in the near-infrared (λ @ 2 μm). According to our calculations, the refractive index change due to absorption resonances is less than 0.2 for all the liquids used. This result was found by applying the Kramers-Kronig relations to transmission measurements obtained with the different fluids used.
  18. C.-B Kim and C. B. Su, "Measurement of the refractive index of liquids at 1.3 and 1.5 micron using a fiber optic Fresnel ratio meter," Meas. Sci. Technol. 15, 1683 (2004) [CrossRef]
  19. C. Sirtori, J. Faist, F. Capasso, D. Sivco, A. Hutchinson, and A. Cho, "Quantum cascade lasers with plasmon enhanced waveguide operating at 8.4 μm wavelength," Appl. Phys. Lett. 66, 3242 (1995). [CrossRef]
  20. M. Lončar, B.G. Lee and F. Capasso, unpublished

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited