OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 24 — Nov. 27, 2006
  • pp: 11672–11680

Surface emitting terahertz quantum cascade laser with a double-metal waveguide

Jonathan A. Fan, Mikhail A. Belkin, Federico Capasso, Suraj Khanna, Mohamed Lachab, A. Giles Davies, and Edmund H. Linfield  »View Author Affiliations


Optics Express, Vol. 14, Issue 24, pp. 11672-11680 (2006)
http://dx.doi.org/10.1364/OE.14.011672


View Full Text Article

Enhanced HTML    Acrobat PDF (389 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the implementation of surface emission via a second order grating in terahertz quantum cascade lasers with double-metal waveguides. Absorbing edge structures are designed to enforce antireflecting boundary conditions, which ensure distributed feedback in the cavity. The grating duty cycle is chosen in order to maximize slope efficiency. Fabricated devices demonstrate surface emission output powers that are comparable to those measured from edge-emitting double metal waveguide structures without gratings. The slope efficiency of surface emitting lasers is twice that of double-metal edge emitting structures. Surface emitting lasers show single mode behavior, with a beam divergence along the laser ridge of approximately six degrees.

© 2006 Optical Society of America

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(250.7270) Optoelectronics : Vertical emitting lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 29, 2006
Revised Manuscript: October 26, 2006
Manuscript Accepted: November 9, 2006
Published: November 27, 2006

Citation
Jonathan A. Fan, Mikhail A. Belkin, Federico Capasso, Suraj Khanna, Mohamed Lachab, A. Giles Davies, and Edmund H. Linfield, "Surface emitting terahertz quantum cascade laser with a double-metal waveguide," Opt. Express 14, 11672-11680 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-24-11672


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156 (2002). [CrossRef] [PubMed]
  2. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode," Opt. Express 13, 3331 (2005). [CrossRef] [PubMed]
  3. K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, D. L. Sivco, and A. Y. Cho, "Quantum cascade lasers with double metal-semiconductor waveguide resonators," Appl. Phys. Lett. 80, 3060 (2002). [CrossRef]
  4. B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, "Terahertz quantum-cascade laser at λ≈100 μm using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124 (2003). [CrossRef]
  5. A. J. L. Adam, I. Kasalynas, J. N. Hovenier, T. O. Klaassen, J. R. Gao, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions," Appl. Phys. Lett. 88, 151105 (2006). [CrossRef]
  6. S. Kohen, B. S. Williams, and Q. Hu, "Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators," J. Appl. Phys. 97, 053106 (2005). [CrossRef]
  7. D. Hofstetter, J. Faist, M. Beck, and U. Oesterle, "Surface-emitting 10.1 μm quantum-cascade distributed feedback lasers," Appl. Phys. Lett. 75, 3769 (1999). [CrossRef]
  8. C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, "Single-mode surface-emitting quantum-cascade lasers," Appl. Phys. Lett. 86, 211102 (2005). [CrossRef]
  9. O. Demichel, L. Mahler, T. Losco, C. Mauro, R. Green, J. H. Xu, A. Tredicucci, F. Beltram, H. E. Beere, D. A. Richie, and V. Tamosiunas, "Surface plasmon photonic structures in terahertz quantum cascade lasers," Opt. Express 14, 5335 (2006). [CrossRef] [PubMed]
  10. G. Scalari, N. Hoyler, M. Giovannini, and J. Faist, "Terahertz bound-to-continuum quantum-cascade lasers based on optical-phonon scattering extraction," Appl. Phys. Lett. 86, 181101 (2005). [CrossRef]
  11. H. Kogelnik and C.V. Shank, "Coupled-wave theory of distributed feedback lasers," J. Appl. Phys. 43, 2327 (1972). [CrossRef]
  12. R. F. Kazarinov and C. H. Henry, "Second-order distributed feedback lasers with mode selection provided by first-order radiation losses," IEEE J. Quantum Electron. QW-21, 144 (1985). [CrossRef]
  13. R. J. Noll and S. H. Macomber, "Analysis of grating surface emitting lasers," IEEE J. Quantum Electron. 26, 456 (1990). [CrossRef]
  14. N. Finger, W. Schrenk, and E. Gornik, "Analysis of TM-polarized DFB laser structures with metal surface gratings," IEEE J. Quantum Electron. 36, 780 (2000). [CrossRef]
  15. M. Schubert and F. Rana, "Analysis of terahertz surface emitting quantum-cascade lasers," IEEE J. Quantum Electron. 42, 257 (2006). [CrossRef]
  16. S. R. Chinn, "Effects of mirror reflectivity in a distributed-feedback laser," IEEE J. Quantum Electron. QE-9, 574 (1973). [CrossRef]
  17. W. Streifer, R. D. Burnham, and D. R. Scifres, "Effect of external reflectors on longitudinal modes of distributed feedback lasers," IEEE J. Quantum Electron. QE-11, 154 (1975). [CrossRef]
  18. S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, "2.9 THz quantum cascade lasers operating up to 70 K in continuous wave," Appl. Phys. Lett. 85, 1674 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited