OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 24 — Nov. 27, 2006
  • pp: 11727–11735

Effects of resonant absorption and inhomogeneous broadening on reflection and absorption spectra of optical lattices in diamond NV centers

Qiongyi He, Tiejun Wang, Jinhui Wu, and Jinyue Gao  »View Author Affiliations


Optics Express, Vol. 14, Issue 24, pp. 11727-11735 (2006)
http://dx.doi.org/10.1364/OE.14.011727


View Full Text Article

Enhanced HTML    Acrobat PDF (2447 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using the transfer-matrix method, the effects of absorption and inhomogeneous broadening, in one-dimensional optical lattice constructed from inhomogeneously broadened spin transitions of nitrogen-vacancy color centers in single crystal diamond (NV diamond), on the reflection and absorption spectrum are presented. Further analysis show that, in realistic periodic stacks of the NV diamond, modulating the geometrical configuration of the external optical potential, the absorption lineshape scale, and the inhomogeneous broadening, one could easily access the diverse gap structures and a high band-gap reflectivity. These pretty useful calculations hold more potential for effective control of the light-matter interaction and realization in practice.

© 2006 Optical Society of America

OCIS Codes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(290.5830) Scattering : Scattering, Brillouin
(300.6250) Spectroscopy : Spectroscopy, condensed matter

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 26, 2006
Revised Manuscript: October 3, 2006
Manuscript Accepted: October 4, 2006
Published: November 27, 2006

Citation
Qiongyi He, Tiejun Wang, Jinhui Wu, and Jinyue Gao, "Effects of resonant absorption and inhomogeneous broadening on reflection and absorption spectra of optical lattices diamond NV centers," Opt. Express 14, 11727-11735 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-24-11727


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58,2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58,2486-2489 (1987). [CrossRef] [PubMed]
  3. S. Harris, "Electromagnetically induced transparency," Phys. Today 50,36-42 (1997). [CrossRef]
  4. A. Andre and M. D. Lukin, "Manipulating light pulses via dynamically controlled photonic band gap," Phys. Rev. Lett. 89,143602 (2002). [CrossRef] [PubMed]
  5. H. Kang, G. Hernandez, and Y. Zhu, "Slow-light six-wave mixing at low light intensities," Phys. Rev. Lett. 93,073601 (2004). [CrossRef] [PubMed]
  6. M. Artoni and G. La Rocca, "Optically tunable photonic stop bands in homogeneous absorbing media," Phys. Rev. Lett. 96,073905 (2006). [CrossRef] [PubMed]
  7. Q. Y. He, Y. Xue, M. Artoni, G. C. La Rocca, J. H. Xu, and J. Y. Gao, "Coherently induced stop-bands in resonantly absorbing and inhomogeneously broadened doped crystals," Phys. Rev. B 73,195124 (2006). [CrossRef]
  8. Q. Y. He, J. H. Wu, T. J. Wang, and J. Y. Gao, "Dynamic control of the photonic stop bands formed by a standing wave in inhomogeneous broadening solids," Phys. Rev. A 73,053813 (2006). [CrossRef]
  9. X. M. Su and B. S. Ham, "Dynamic control of the photonic band gap using quantum coherence," Phys. Rev. A 71,013821 (2005). [CrossRef]
  10. M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, and K. M. Ho, "Photonic band gaps and defects in two dimensions: studies of the transmission coefficient," Phys. Rev. B 48,14121-14126 (1993). [CrossRef]
  11. M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Ho, "Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials," Phys. Rev. B 49,11080-11087 (1994). [CrossRef]
  12. A. A. Krokhin and P. Halevi, "Influence of weak dissipation on the photonic band structure of periodic composites," Phys. Rev. B 53,1205-1214 (1996). [CrossRef]
  13. A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, S. G. Tikhodeev, and T. Ishihara, "Optical properties of polaritonic crystal slab," Phys. Stat. Solidi A 190,413-419 (2002). [CrossRef]
  14. M. Hubner, J. P. Prineas, C. Ell, P. Brick, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, "Optical lattices achieved by excitons in periodic quantum well structures," Phys. Rev. Lett. 83,2841-2844 (1999). [CrossRef]
  15. J. P. Prineas, C. Ell, E. S. L EE, G. Khitrova, H. M. Gibbs, and S. W. Koch, "Exciton-polariton eigenmodes in light-coupled in 0.04Ga0.96As/GaAs semiconductor multiple-quantum-well periodic structures," Phys. Rev. B 61,13863-13872 (2000). [CrossRef]
  16. L. I. Deych, M. V. Erementchouk, and A. A. Lisyansky, "Effects of inhomogeneous broadening on reflection spectra of Bragg multiple quantum well structures with a defect," Phys. Rev. B 69,075308 (2004). [CrossRef]
  17. E. L. Ivchenko, M. M. Voronov, M. V. Eremetchouk, L. I. Deych, and A. A. Lisyansky, "Multiple-quantum-wellbased photonic crystals with simple and compound elementary supercells," Phys. Rev. B 70,195106 (2004). [CrossRef]
  18. M. Artoni, G. La Rocca, and F. Bassani, "Resonantly absorbing one-dimensional photonic crystals," Phys. Rev. E 72,046604 (2005). [CrossRef]
  19. X. F. He, N. B. Manson, and P. T. H. Fisk, "Paramagnetic resonance of photoexcited N-V defects in diamond. I. Level anticrossing in the 3A ground state," Phys. Rev. B 47,8809 (1993). [CrossRef]
  20. P. R. Hemmer, A. V. Turukhin, M. S. Shahriar, and J. Musser, "Raman excited spin coherence in NV-Diamond," Opt. Lett. 26,361-363 (2001). [CrossRef]
  21. M. Born and E. Wolf, Principles of Optics, 6th Edition (Cambridge University Press, Cambridge, 1980).
  22. E. Kuznetsova, O. Kocharovskaya, P. Hemmer, and M. O. Scully, "Atomic interference phenomena in solids with a long-lived spin coherence," Phys. Rev. A 66,063802 (2002). [CrossRef]
  23. A. Javan, O. Kocharovskaya, H. Lee, and M. O. Scully, "Narrowing of electromagnetically induced transparency resonance in a Doppler-broadened medium," Phys. Rev. A 66,013805 (2002). [CrossRef]
  24. The use of Lorentzian line shapes allows us to obtain analytical results for χ as described in detail in Ref. [22].
  25. Here, χ (ω,ωab(cb)_ = Nμ2 abρab/(2¯hΩp) the density equations and all parameters are shown in detail in our earlier work [7, 8].
  26. F. Bassani and G. Pastori Parravicini, Electronic States and Optical Transitions in Solids (Pergamon Press, Oxford, 1975).
  27. In typical experimental configurations a is set by the periodicity of the standing wave and it is just half the wavelength of the two counter-propagating laser beams creating the optical potential as described in following Ref. [28, 29]. Each slab has a thickness d sufficiently smaller than the periodicity.
  28. I. H. Deutsch, R. J. C. Spreeuw, S. L. Rolston, and W. D. Phillips, "Photonic band gaps in optical lattices," Phys. Rev. A 52,1394-1410 (1995). [CrossRef] [PubMed]
  29. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, "Stationary pulses of light in an atomic medium," Nature 426,638-641 (2003). [CrossRef] [PubMed]
  30. The scaling affects both the resonant absorption (κ) and the refractive index (η) as shown in Fig. 2(c) for NV diamond. α → 1 corresponds to the actual linewidth profile, smaller α yield a linewidth narrowing with a concomitant peak absorption increase.
  31. It could be realized by using a rather large misalignment between the two beams. While in Fig. 2(b) the periodicity a ≃ 318.5 nm is the situation in which the two beams are exactly counter propagating, because it is just equal to the half-wavelength of the resonant transition from the excited state |ai to the ground-state spin sublevel |ci in NV diamond.
  32. B. S. Ham, P. R. Hemmer, and M. S. Shahriar, "Efficient electromagnetically induced transparency in a rare-earth doped crystal," Opt. Commun. 144,227-230 (1997). [CrossRef]
  33. According to the experiment done by Ham in Ref. [32], we know that inhomogeneous line broadening can be effectively reduced up to the magnitude of the laser beam jitter using an optical repump scheme, corresponding reduction in the effective atomic density. As for the use of a repumper in Ref. [20], the authors explicitly say that for NV diamond this procedure is not frequency selective, however in Ref. [22, 23] the discrepancy in the transparency value (bigger in experiment than in theory) is attributed to possible effects of the repumper. Maybe that the use of the repumper in NV diamond leads to a minor correction of the broadening compared to the case of Pr:YSO.
  34. M. Artoni, G. La Rocca, and F. Bassani have described the detail about labs and lext for atom stacks in Ref. [18].
  35. T. Shibata, "Micromachining of diamond thin film," New Diamond Front. Carbon Technol. 10,161-175 (2000).
  36. C. Tavares, F. Omnes, J Pernot, and E. Bustarret, "Electronic properties of boron-doped 111-oriented homoepitaxial diamond layers," Diamond Relat. Mater. 15,582-585 (2006). [CrossRef]
  37. S. Tomljenovic-Hanic, M. J. Steel, and C. Martijn de Sterke, "Diamond based photonic crystal microcavities," Opt. Express 14,3556 (2006). [CrossRef] [PubMed]
  38. M. Lukin, "Colloquium: trapping and manipulating photon states in atomic ensembles," Rev. Mod. Phys. 75,457 (2003). [CrossRef]
  39. A. Andre, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, "Nonlinear optics with stationary pulses of light," Phys. Rev. Lett. 94,063902 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited