OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 24 — Nov. 27, 2006
  • pp: 11773–11786

Microstructured fibers for broadband wavefront filtering in the mid-IR

Joanne C. Flanagan, D. J. Richardson, M. J. Foster, and I. Bakalski  »View Author Affiliations


Optics Express, Vol. 14, Issue 24, pp. 11773-11786 (2006)
http://dx.doi.org/10.1364/OE.14.011773


View Full Text Article

Enhanced HTML    Acrobat PDF (404 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The European Space Agency’s space-based DARWIN mission aims to directly detect extrasolar Earth-like planets using nulling interferometry. However, in order to accomplish this using current optical technology, the interferometer input beams must be filtered to remove local wavefront errors. Although short lengths of single-mode fiber are ideal wavefront filters, DARWIN’s operating wavelength range of 4–20 µm presents real challenges for optical fiber technology. In addition to the fact that step-index fibers only offer acceptable coupling efficiency over about one octave of optical bandwidth, very few suitable materials are transparent within this wavelength range. Microstructured optical fibers offer two unique properties that hold great promise for this application; they can be made from a single-material and offer endlessly single-mode guidance. Here we explore the advantages of using a microstructured fiber as a broadband wavefront filter for 4–20 µm.

© 2006 Optical Society of America

OCIS Codes
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(220.4830) Optical design and fabrication : Systems design
(350.1260) Other areas of optics : Astronomical optics

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: July 7, 2006
Revised Manuscript: October 16, 2006
Manuscript Accepted: October 17, 2006
Published: November 27, 2006

Citation
Joanne C. Flanagan, D. J. Richardson, M. J. Foster, and I. Bakalski, "Microstructured fibers for broadband wavefront filtering in the mid-IR," Opt. Express 14, 11773-11786 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-24-11773


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Mayor and D. Queloz, "A Jupiter-mass companion to a solar-type star," Nature 378, 355-359 (1995). [CrossRef]
  2. N. Woolf and J. R. Angel, "Astronomical searches for earth-like planets and signs of life," Astron. Astrophys. 36, 507-537 (1998). [CrossRef]
  3. R. N. Bracewell, "Detecting nonsolar planets by spinning infrared interferometer," Nature 274, 780-781 (1978). [CrossRef]
  4. J. R. P. Angel, A. Y. S. Cheng and N. J. Woolf, "A space telescope for infrared spectroscopy of Earth-like planets," Nature 322, 341-434 (1978). [CrossRef]
  5. C. V. M. Fridlund, "DARWIN - The Infrared Space Interferometry Mission," ESA bulletin 103,20-25 (2000), http://www.esa.int/esapub/bulletin/bullet103/fridlund103.pdf.
  6. http://planetquest.jpl.nasa.gov/Navigator/library/tpfI414.pdf
  7. M. Ollivier and J.-M. Mariotti, "Improvement in the rejection rate of a nulling interferometer by spatial filtering," Appl. Opt. 36, 5340 - 5346 (1997). [CrossRef] [PubMed]
  8. B. Mennesson, M. Ollivier and C. Ruilier, "Use of single-mode waveguides to correct the optical defects of a nulling interferometer," J. Opt. Soc. Am. A 19, 596 - 602 (2002). [CrossRef]
  9. DARWIN Payload Definition Document SCI-A/2005/301/Darwin/DMS/LdA
  10. O. Wallner, W. R. Leeb and R. Flatscher, "Design of spatial and modal filters for nulling interferometry," Proc. SPIE 838, 668-679 (2003). [CrossRef]
  11. P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003). [CrossRef] [PubMed]
  12. J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003). [CrossRef] [PubMed]
  13. J. C. Baggett, T. M. Monro, and D. J. Richardson, "Mode area limits in practical single-mode fibers," Conference of Lasers and Electro-Optics 2005 (CLEO’05), Baltimore, USA, 22-27th May 2005, paper CMD6.
  14. J. Corbett and J. Allington-Smith, "Coupling starlight into single-mode photonic crystal fiber using a field lens," Opt. Express 13, 6527-6540 (2005). [CrossRef] [PubMed]
  15. J. C. Flanagan, D. J. Richardson, M. Foster and I. Bakalski, "A microstructured wavefront filter for the DARWIN nulling interferometer," Proc. ‘6th International Conf. on Space Optics,’ ESTEC, Noordwijk, The Netherlands, 27-30 June 2006 (ESA SP-621, June 2006).
  16. O. Wallner, W. R. Leeb, and P. J. Winzer, "Minimum length of a single-mode spatial filter," J. Opt. Soc. Am. A. 192445-2448 (2002). [CrossRef]
  17. O. Wallner, P. J. Winzer, and W. R. Leeb, "Alignment tolerances for plane wave to single-mode fiber coupling and their mitigation by use of pigtailed collimators," Appl. Opt. 41637 - 643 (2001). [CrossRef]
  18. E. Eran Rave, P. Ephrat, M. Goldberg, E. Kedmi, and A. Katzir, "Silver Halide Photonic Crystal Fibers for the Middle Infrared,"Appl. Opt. 43, 2236 - 2241 (2004). [CrossRef] [PubMed]
  19. E. Rave, S. Sade, A. Millo, and A. Katzir, "Few modes in infrared photonic crystal fibers," J. Appl. Phys. 97, 033103 (2005). [CrossRef]
  20. L. N. Butvina, E. M. Dianov, N. V. Lichkova, V. N. Zavgorodnev, and L. Kuepper, "Crystalline silver halide fibers with optical losses lower than 50 dB/km in broad IR region and their applications," in Advances in Fiber Optics, E. M. Dianov, eds., Proc. SPIE 4083, 238-253 (2000). [CrossRef]
  21. T. M. Monro, P. J. Bennett, N. G. R. Broderick, and D. J. Richardson, "Holey fibers with random cladding distributions," Opt. Lett. 25206-208 (2000). [CrossRef]
  22. G. Renversez, F. Bordas, and B. T. Kuhlmey, "Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size," Opt. Lett. 30, 1264-1266 (2005). [CrossRef] [PubMed]
  23. N. A. Mortensen, "Effective area of photonic crystal fibers," Opt. Express 10, 341-348 (2002). [PubMed]
  24. T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, M. J. Steel, "Confinement losses in microstructured optical fibers," Opt. Lett. 261660 - 1662 (2001). [CrossRef]
  25. http://www.comsol.com/products/electro/
  26. http://www.crystran.co.uk/products.asp
  27. G. P. Agrawal, Nonlinear Fiber Optics, 3rd Ed (Academic Press 2001) pp. 44.
  28. T. M. Monro, H. Ebendorff-Heidepriem, X. Feng, "Non-silica microstructured optical fibers," Ceram. Trans. 163, 29-48 (2005).
  29. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. S. J. Russell, "All-solid photonic bandgap fiber," Opt. Lett. 29, 2369-2371 (2004). [CrossRef] [PubMed]
  30. H. P. Uranus, H. J. W. M. Hoekstra, and E. van Groesen, "Modes of an endlessly single-mode photonic crystal fiber: a finite element investigation," Proc. IEEE/LEOS Benelux Chapter, 2004, Ghent.
  31. A. Argyros, and I. Bassett, "Counting Modes in Optical Fibres with Leaky Modes," in Symposium on Optical Fiber Measurements SOFM 2002, National Institute of Standards and Technology, Colorado, USA September 24-26 pp. 135-138 (2002).
  32. J. Folkenberg, M. Nielsen, N. Mortensen, C. Jakobsen, and H. Simonsen, "Polarization maintaining large mode area photonic crystal fiber," Opt. Express 12, 956-960 (2004). [CrossRef] [PubMed]
  33. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, "Optical properties of a low-loss polarization-maintaining photonic crystal fiber," Opt. Express 9, 676-680 (2001). [CrossRef] [PubMed]
  34. M. Yan and P. Shum, "Guidance varieties in photonic crystal fibers," J. Opt. Soc. Am. B 23, pp. 1684 - 1691 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited