OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 24 — Nov. 27, 2006
  • pp: 11804–11813

Distributed measurements of fiber birefringence and diametric load using optical low-coherence reflectometry and fiber gratings

Dragan Coric, Hans G. Limberger, and René P. Salathé  »View Author Affiliations


Optics Express, Vol. 14, Issue 24, pp. 11804-11813 (2006)
http://dx.doi.org/10.1364/OE.14.011804


View Full Text Article

Acrobat PDF (674 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Polarization sensitive optical low-coherence reflectometry (OLCR) is used for measuring the complex fiber Bragg gratings (FBG) reflection coefficient. We determine the beat length directly from oscillations in the OLCR amplitude with a resolution of 10-6 and a spatial resolution only limited by the minimum beat length or the coherence length of the light source. Using the OLCR amplitude and phase in combination with an inverse scattering algorithm the birefringence is retrieved with a resolution of 2×10-5 while the spatial resolution is 25 μm. The two developed techniques are applied for measuring position, magnitude and footprint of induced birefringence of an FBG under uniform and non-uniform diametric loading.

© 2006 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(230.1480) Optical devices : Bragg reflectors
(260.1440) Physical optics : Birefringence

ToC Category:
Optical Devices

History
Original Manuscript: September 7, 2006
Revised Manuscript: November 7, 2006
Manuscript Accepted: November 8, 2006
Published: November 27, 2006

Citation
Dragan Coric, Hans G. Limberger, and René P. Salathé, "Distributed measurements of fiber birefringence and diametric load using optical low-coherence reflectometry and fiber gratings," Opt. Express 14, 11804-11813 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-24-11804


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, C. Zimmer, and H. H. Gilgen, "Bragg grating characterization by Optical Low-Coherence Reflectometry," IEEE Photon. Technol. Lett. 5, 565-567 (1993). [CrossRef]
  2. P. Giaccari, H. G. Limberger, and R. Salathé, "Local characterization of fiber Bragg gratings complex coupling coefficient," Opt. Lett. 28, 598-600 (2003).
  3. S. D. Dyer and K. B. Rochford, "Low-coherence interferometric measurements of fibre Bragg grating dispersion," Electron. Lett. 35, 1485-1486 (1999). [CrossRef]
  4. P. Giaccari, "Fiber Bragg gratings characterization by Optical Low-Coherence Reflectometry and sensing applications," Microengineering Department, Swiss Federal Institute of Technology Lausanne, PhD thesis no. 2726, Lausanne (2003).
  5. R. Feced, M. N. Zervas, and M. A. Muriel, "An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings," IEEE J. Quantum Electron. 35, 1105-1115 (1999). [CrossRef]
  6. J. Skaar, L. Wang, and T. Erdogan, "On the synthesis of fiber Bragg gratings by layer peeling," IEEE J. Quantum Electron. 37, 165-173 (2001). [CrossRef]
  7. M. Volanthen, H. Geiger, M. J. Cole, and J. P. Dakin, "Measurement of arbitrary strain profiles within fiber gratings," Electron. Lett. 32, 1028-1029 (1996). [CrossRef]
  8. M. M. Ohn, S. Y. Huang, R. M. Measures, and J. Chwang, "Arbitrary strain profile measurement within fibre gratings using interferometric Fourier transform technique," Electron. Lett. 33, 1242-1243 (1997). [CrossRef]
  9. P. Giaccari, G. R. Dunkel, L. Humbert, J. Botsis, H. G. Limberger, and R. P. Salathé, "On direct determination of non-uniform internal strain fields using fibre Bragg gratings," Smart Mater. Struct. 14, 127-136 (2005). [CrossRef]
  10. F. Bosia, P. Giaccari, J. Botsis, M. Facchini, H. G. Limberger, and R. Salathé, "Characterization of the response of fibre Bragg grating sensors subjected to a two-dimensional strain field," Smart Mater. Struct. 12, 925-934 (2003). [CrossRef]
  11. R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis, "Effects of diametric load on fibre Bragg gratings fabricated in low birefringent fibre," Electron. Lett. 32, 1223-1224 (1996). [CrossRef]
  12. X. Shu, K. Chisholm, I. Felmeri, K. Sugden, A. Gillooly, Z. Lin, and I. Bennion, "Highly sensitive transverse load sensing with reversible sampled fiber Bragg gratings," Appl. Phys. Lett. 83, 3003-3005 (2003). [CrossRef]
  13. P. Torres and L. C. G. Valente, "Spectral response of locally pressed fiber Bragg grating," Opt. Commun. 208, 285-291 (2002). [CrossRef]
  14. S. C. Tjin, L. Mohanty, and N. Q. Ngo, "Pressure sensing with embedded chirped fiber grating," Opt. Commun. 216, 115-118 (2003). [CrossRef]
  15. M. Leblanc, S. T. Vohra, T. E. Tsai, and E. J. Friebele, "Transverse load sensing by use of pi-phase-shifted fiber Bragg gratings," Opt. Lett. 24, 1091-1093 (1999).
  16. A. M. Gillooly, H. Dobb, Z. Lin, and I. Bennion, "Distributed load sensor by use of a chirped moire fiber Bragg grating," Appl. Opt. 43, 6454-6457 (2004). [CrossRef]
  17. D. Sandel, R. Noe, G. Heise, and B. Borchert, "Optical network analysis and longitudinal structure characterization of fiber Bragg grating," J. Lightwave Technol. 16, 2435-2442 (1998). [CrossRef]
  18. O. H. Waagaard, "Polarization-resolved spatial characterization of birefringent Fiber Bragg Gratings," Opt. Express 14, 4221-4236 (2006). [CrossRef]
  19. O. H. Waagaard and J. Skaar, "Synthesis of birefringent reflective gratings," J. Opt. Soc. Am. A 21, 1207-1220 (2004). [CrossRef]
  20. K. Takada, J. Noda, and R. Ulrich, "Precision measurement of modal birefringence of highly birefringent fibers by periodic lateral force," Appl. Opt. 24, 4387- 4391 (1985).
  21. A. Simon and R. Ulrich, "Evolution of polarization along a single-mode fibre," Appl. Phys. Lett. 31, 517-520 (1977). [CrossRef]
  22. K. Takada, A. Himeno, and K.-i. Yukimalsu, "High sensitivity and submillimeter resolution optical time-domain reflectometry based on low-coherence interference," J. Lightwave Technol. 10, 1998-2005 (1992). [CrossRef]
  23. D. P. Dave and T. E. Milner, "Precise beat length measurement of birefringent fibres with dual channel low-coherence reflectometer," Electron. Lett. 37, 215-216 (2001). [CrossRef]
  24. B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. Von der Weid, "Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry," IEEE Photon. Technol. Lett. 10, 1458 -1460 (1998). [CrossRef]
  25. A. Galtarossa, L. Palmieri, A. Pizzinat, M. Schiano, and T. Tambosso, "Measurement of local beat length and differential group delay in installed single-mode fibers," J. Lightwave Technol. 18, 1389-1394 (2000).
  26. B. J. Soller, D. K. Gifford, M. S. Wolfe, and M. E. Froggatt, "High resolution optical frequency domain reflectometry for characterization of components and assemblies," Opt. Express 13, 666-674 (2005). [CrossRef]
  27. D. Coric, H. G. Limberger, and R. P. Salathé, "Direct measurement of fiber Bragg grating local birefringence using optical low coherence reflectometry," in 17th International Conference on Optical Fibre Sensors, OFS'17, M. Voet, R. Willsch, W. Ecke, J. Jones, B. Culshaw, eds., Proc. SPIE 5855, 154-157 (2005).
  28. D. Coric, H. G. Limberger, and R. P. Salathé, "Distributed sensing of diametric load using Optical Low Coherence Reflectometry and fiber Bragg gratings," in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, BGPP/ACOFT'2005, Sydney (2005).
  29. R. J. Espejo and S. D. Dyer, "High spatial resolution measurements of transverse stress in a fiber Bragg grating using four-state analysis low-coherence interferometry and layer-peeling," Proc. SPIE 6167, 616707, San Diego, CA, United States (2006).
  30. Y. Namihira, "Opto-elastic constant in single mode optical fibers," J. Lightwave Technol. LT-3, 1078 (1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited