OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 24 — Nov. 27, 2006
  • pp: 11814–11822

Metallic nanocluster gratings generated by nearfield coupling of localized surface plasmons

Hyong Sik Won and Seok Ho Song  »View Author Affiliations

Optics Express, Vol. 14, Issue 24, pp. 11814-11822 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (5452 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Metallic nanocluster gratings composed of a 3-dimensionally periodic distribution of silver nanoparticles are successfully formed in a dielectric. A periodic arrangement of silver nanoclusters are created by holographic interference of two continuous-wave laser beams in a glass medium with embedded ~10 nm silver nanoparticles. The diffraction efficiency is much higher for the nanocluster gratings formed by TEpolarized (parallel to grating fringes) beams than those formed by TMpolarized beams. This strong polarization dependence in the formation of nanocluster gratings reveals that strong near-field coupling between localized surface plasmons excited at the metallic nanoparticles is one of the dominant mechanisms governing the rearrangement of the silver nanoparticles. The nonlinear response of metallic nanoparticles is greatly enhanced when the incident light is polarized along the lines of the silver nanoparticles.

© 2006 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: September 19, 2006
Revised Manuscript: October 23, 2006
Manuscript Accepted: October 23, 2006
Published: November 27, 2006

Hyong Sik Won and Seok Ho Song, "Metallic nanocluster gratings generated by near-field coupling of localized surface plasmons," Opt. Express 14, 11814-11822 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Heidelberg, 1995), Chap. 1.
  2. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance," Phys. Rev. Lett. 84, 4721-4724 (2000). [CrossRef] [PubMed]
  3. S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B. 65, 1934081-1934084 (2002). [CrossRef]
  4. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998). [CrossRef]
  5. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  6. J. Yoon, K Choi, S. H. Song, and G. Lee, "Subwavelength focusing of light from a metallic slit surrounded by grooves with chirped period," J. Opt. Soc. Korea 9, 162-168 (2005). [CrossRef]
  7. M. Yano, M. Fukui, M. Haraguchi, and Y. Shintani, "Insitu and real-time observation of optical constants of metal films during growth," Surf. Sci. 227, 129 - 137 (1997). [CrossRef]
  8. N. Garcia, E. V. Ponizovskaya, and J. Q. Xiao, "Zero permittivity materials: Band gaps at the visible," Appl. Phys. Lett. 80, 1120 - 1122 (2002). [CrossRef]
  9. J. Yoon, G. Lee, S. Ho Song, C.-H. Oh, and P.-S. Kim, "Surface-plasmon photonic band gaps in dielectric gratings on a flat metal surface," J. Appl. Phys. 94, 123-129 (2003). [CrossRef]
  10. S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, "Refraction in Media with a negative Refractive Index," Phys. Rev. Lett. 90, 1074021-1074024 (2003). [CrossRef]
  11. K. Kaneko, H.-B. Sun, X.-M. D. and S. Kawata, "Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix," Appl. Phys. Lett. 83, 1426-1428 (2003). [CrossRef]
  12. S. S. Najafi, Introduction to Glass Integrated Optics (Artech House, Boston, 1992), Chap. 1.
  13. I. Tanahashi, M. Yoshida, Y. Manabe, and T. Tohda, "Effects of heat treatment on Ag particle growth and optical properties in Ag/SiO2 glass composite thin films," J. Mater. Res. 10, 362-365 (1995). [CrossRef]
  14. D. L. Feldheim and C. A. J. Foss, Metal Nanoparticles (Marcel Dekker, New York, 2002), Chap. 4.
  15. C. Montero, C. Gomez-Reino and J. L. Brebner, "Planar Bragg gratings made by excimer-laser modification of ion-exchanged waveguides," Opt. Lett. 24, 1487-1489 (1999). [CrossRef]
  16. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, "High-efficiency Bragg gratings in photothermorefractive glass," Appl. Opt. 38, 619-627 (1999). [CrossRef]
  17. F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G. Battaglin, P. Calvelli, R. Polloni, G. W. Arnold, R. Bertoncello, and R. F. HaglundJr., "Interaction of high-power laser light with silver nanocluster composite glasses," Appl. Phys. Lett. 69, 3101-3103 (1996). [CrossRef]
  18. M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, "Ultrashort laser pulse induced deformation of silver nanoparticles in glass," Appl. Phys. Lett. 74, 1200-1202 (1999). [CrossRef]
  19. H. Tamaru, H. Kuwata, H. T. Miyazaki and K. Miyano, "Resonant light scattering from individual Ag nanoparticles and particle pairs," Appl. Phys. Lett. 80, 1826-1828 (2002). [CrossRef]
  20. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003). [CrossRef]
  21. Z. Liu, H. Wang, H. Li and X. Wang, "Red shift of plasmon resonance frequency due to the interacting Ag nanoparticles embedded in single crystal SiO2 by implantation," Appl. Phys. Lett. 72, 1823-1825 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited