OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 24 — Nov. 27, 2006
  • pp: 11848–11854

Analysis of photonic crystal fibers: Scalar solution and polarization correction

Víctor Hugo Aristizabal, Francisco Javier Vélez, and Pedro Torres  »View Author Affiliations


Optics Express, Vol. 14, Issue 24, pp. 11848-11854 (2006)
http://dx.doi.org/10.1364/OE.14.011848


View Full Text Article

Enhanced HTML    Acrobat PDF (377 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A numerical approach based on the scalar finite element method is applied to analyse the modal properties of photonic crystal fibers having a solid core and a cladding region with either circular or non-circular microstructured holes. A correction which accounts for the polarization effects due to the large refractive index difference between silica materials and air holes is included in the analysis. Numerical results show that the proposed technique is an efficient and accurate alternative to vector ones.

© 2006 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2400) Fiber optics and optical communications : Fiber properties
(060.2430) Fiber optics and optical communications : Fibers, single-mode

ToC Category:
Photonic Crystal Fibers

History
Original Manuscript: September 18, 2006
Revised Manuscript: November 8, 2006
Manuscript Accepted: November 11, 2006
Published: November 27, 2006

Citation
Víctor Hugo Aristizabal, Francisco Javier Vélez, and Pedro Torres, "Analysis of photonic crystal fibers: Scalar solution and polarization correction," Opt. Express 14, 11848-11854 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-24-11848


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Aktin, "All silica single mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1999). [CrossRef]
  2. T. A. Birks, J. C. Knight, P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  3. W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, "Soliton effects in photonic crystal fibers at 850 nm," Electron. Lett. 36, 53-55 (2000). [CrossRef]
  4. K. Furusawa, A. N. Malinowski, J. H. V. Price, T. M. Monro, J. K. Sahu, J. Nilsson, and D. J. Richardson, "Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding," Opt. Express 9, 714-720 (2001). [CrossRef] [PubMed]
  5. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, "Anomalous dispersion in photonic crystal fiber," IEEE Photon. Technol. Lett. 12, 807-809 (2000). [CrossRef]
  6. W. H. Reeves, J. C. Knight, P. St. J. Russell, and P. J. Roberts, "Demonstration of ultra-flattened dispersion in photonic crystal fibers," Opt. Express 10, 609-613 (2002). [PubMed]
  7. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, "Chromatic dispersion control in photonic crystal fiber: application to ultra-flattened dispersion," Opt. Express 11, 843-852 (2003). [CrossRef] [PubMed]
  8. A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, M. V. Andrés, "Full-vector analysis of a realistic photonic crystal fiber," Opt. Lett. 24, 276-278 (1999). [CrossRef]
  9. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, "Modeling large air fraction holey optical fibers," J. Lightwave Technol. 18, 50-56 (2000). [CrossRef]
  10. F. Fogli, L. Saccomandi, P. Bassi, G. Bellanca, and S. Trillo, "Full vectorial BPM modeling of index-guiding photonic crystal fibers and couplers," Opt. Express 10, 54-59 (2002). [PubMed]
  11. K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," J. Quantum Electron. 38, 927-933 (2002). [CrossRef]
  12. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002). [CrossRef]
  13. S. Campbell, R. C. McPhedran, C. Martijn de Sterke, and L. C. Botten, "Differential multipole method for microstructured optical fibers," J. Opt. Soc. Am. B 21, 1919-1928 (2004). [CrossRef]
  14. Z. Zhu and T. G. Brown, "Full-vectorial finite-difference analysis of microstructured optical fibers, "Opt. Express 10, 853-864 (2002). [PubMed]
  15. C. P. Yu and H. C. Chang, "Applications of the finite difference mode solution method to photonic crystal structures," Opt. Quantum Electron. 36, 145-163 (2004). [CrossRef]
  16. M. Qiu, "Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method," Microwave Opt. Technol. Lett. 30, 327-330 (2001). [CrossRef]
  17. K. Saitoh and M. Koshiba, "Numerical modeling of photonic crystal fibers," J. Lightwave Technol. 23, 3580-3580 (2005). [CrossRef]
  18. T. N. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, "Holey optical fibers: An efficient modal model," J. Lightwave Technol. 17, 1093-1102 (1999). [CrossRef]
  19. C. E. Kerbage, B. J. Eggleton, P. S. Westbrook, and R. S. Windeler, "Experimental and scalar beam propagation analysis of an air-silica microstructure fiber," Opt. Express 7, 113-122 (2000). [CrossRef] [PubMed]
  20. J. Riishede, N. A. Mortensen, and J. N. Lægsgaard, "A ‘poor man’s approach’ to modelling micro-structured optical fibres," J. Opt. A: Pure Appl. Opt. 5, 534-538 (2003). [CrossRef]
  21. V. H. Aristizabal, F. J. Vélez, and P. Torres, "Modelling of photonic crystal fibers with the scalar finite element method," in 5th Iberoamerican Meeting on Optics and 8th Latin American Meeting on Optics, Laser and their Applications, A. Marcano and J. L. Paz, eds., Proc. SPIE 5622, 849-854 (2004). [CrossRef]
  22. T. A. Birks, D. M. Bird, T. D. Hedley, J. M. Pottage, and P. St. J. Russell, "Scaling laws and vector effects in bandgap-guiding fibres," Opt. Express 12, 69-74 (2004). [CrossRef] [PubMed]
  23. N. A. Mortensen, "Semianalytical approach to short-wavelength dispersion and modal properties of photonic crystal fibers," Opt. Lett. 30, 1455-1457 (2005). [CrossRef] [PubMed]
  24. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer Academic, 2000).
  25. H. P. Uranus and H. J. W. M. Hoekstr, "Modelling of microstructured waveguides using a finite-element-based vectorial mode solver with transparent boundary conditions," Opt. Express 12, 2795-2809 (2004). [CrossRef] [PubMed]
  26. A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, "Holey fiber analysis through the finite-element method," IEEE Photon. Technol. Lett. 14, 1530-1532 (2002). [CrossRef]
  27. K. Saitoh and M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett. 15, 1384-1386 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited