OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 24 — Nov. 27, 2006
  • pp: 11870–11884

Time-domain analysis of periodic anisotropic media at oblique incidence: an efficient FDTD implementation

Chulwoo Oh and Michael J. Escuti  »View Author Affiliations


Optics Express, Vol. 14, Issue 24, pp. 11870-11884 (2006)
http://dx.doi.org/10.1364/OE.14.011870


View Full Text Article

Enhanced HTML    Acrobat PDF (819 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe an efficient implementation of the finite-difference time-domain (FDTD) method as applied to lightwave propagation through periodic media with arbitrary anisotropy (birefringence). A permittivity tensor with non-diagonal elements is successfully integrated here with periodic boundary conditions, bounded computation space, and the split-field update technique. This enables modeling of periodic structures using only one period even with obliquely incident light in combination with both monochromatic (sinusoidal) and wideband (time-domain pulse) sources. Comparisons with results from other techniques in four validation cases are presented and excellent agreement is obtained. Our implementation is freely available on the Web.

© 2006 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(160.1190) Materials : Anisotropic optical materials
(230.1950) Optical devices : Diffraction gratings
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

History
Original Manuscript: August 28, 2006
Revised Manuscript: October 19, 2006
Manuscript Accepted: November 1, 2006
Published: November 27, 2006

Citation
Chulwoo Oh and Michael J. Escuti, "Time-domain analysis of periodic anisotropic media at oblique incidence: an efficient FDTD implementation," Opt. Express 14, 11870-11884 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-24-11870


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. C. Jones, "A new calculus for the treatment of optical systems. I. Description and discussion of the calculus," J. Opt. Soc. Am. 31, 488-493 (1941). [CrossRef]
  2. A. Lien, "Extended Jones matrix presentation for the twisted nematic liquid-crystal display at oblique incidence," Appl. Phys. Lett. 57, 2767-2769 (1990). [CrossRef]
  3. D. W. Berreman, "Optics in stratified and anisotropic media: 4×4-matrix formulation," J. Opt. Soc. Am. 62, 502-510 (1972). [CrossRef]
  4. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966). [CrossRef]
  5. E. K. Miller, L. Medgyesi-Mitschang, and E. H. Newman, Computational electrodynamics - frequency-domain method of moments (IEEE Press, 1992).
  6. S. G. Garcia, T. M. HungBao, R. G. Martin, and B. G. Olmedo, "On application of finite methods in time domain to anisotropic dielectric waveguides," IEEE Trans. Microwave Theory Tech. 44, 2195-2206 (1996). [CrossRef]
  7. Y. A. Kao, "Finite-difference time-domian modeling of oblique incidence scattering from periodic surfaces," Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA (1997).
  8. A. Taflove and S. C. Hagness, Computational electrodynamics: finite-difference time-domain method, 2nd ed. (Artech House, Norwood, MA, 2000), Chap. 13.
  9. J. A. Roden, S. D. Gedney, M. P. Kesler, J. G. Maloney, and P. H. Harms, "Time-domain analysis of periodic structures at oblique incidence: orthorgonal and nonorthogonal FDTD implementation," IEEE Trans. Microwave Theory Tech. 46, 420-427 (1998). [CrossRef]
  10. S. D. Gedney, "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas Propag. 44, 1630-1639 (1996). [CrossRef]
  11. J. A. Kong, Theory of electromagnetic waves (Wiley, New York, 1975).
  12. G. B. Arfken and H. J. Weber, Mathematical methods for physicists, 4th ed. (Academic Press, San Diego, 1995).
  13. J. Schneider and S. Hudson, "The finite-difference time-domain method applied to anisotropic material," IEEE Trans. Antennas Propag. 41, 994-999 (1993). [CrossRef]
  14. C. M. Titus, P. J. Bos, J. R. Kelly, and E. C. Gartland, "Comparison of analytical calculations to finite-difference time-domain simulations of one-dimensional spatially varying anisotropic liquid crystal structures," Jpn. J. Appl. Phys. 38, 1488-1494 (1999). [CrossRef]
  15. X. Zhang, J. Fang, K. K. Mei, and Y. Liu, "Calculations of the dispersive characteristics of microstrips by the time-domain finite difference method," IEEE Trans. Microwave Theory Tech. 36, 263-267 (1988). [CrossRef]
  16. C. M. Furse, S. P. Mathur, and O. P. Gandhi, "Improvements to the finite-difference time-domain method for calculating the radar cross section of a perfectly conducting target," IEEE Trans. Microwave Theory Tech. 38, 919-927 (1990). [CrossRef]
  17. P. Yeh and C. Gu, Optics of liquid crystal displays (Wiley, New York, 1999).
  18. C. H. Gooch and H. A. Tarry, "The optical properties of twisted nematic liquid crystal structures with twist angles ≤ 90 degrees," J. Phys. D: Appl. Phys. 8, 1575-1584 (1975). [CrossRef]
  19. W. H. Southwell, "Gradient-index antireflection coatings," Opt. Lett. 8, 584-586 (1983). [CrossRef] [PubMed]
  20. G. R. Fowles, Introduction to modern optics (Holt, Rinehart and Winston, New York, 1968).
  21. I. Richter, Z. Ryzi, and P. Fiala, "Analysis of binary diffraction gratings: comparison of different approaches," J. Mod. Opt. 16, 1915-1917 (1991).
  22. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. 71, 811-818 (1981). [CrossRef]
  23. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," Proc. IEEE 73, 894-937 (1985).
  24. S. D. Kakichashvili, "Method of recording phase polarization holograms," Sov. J. Quantum. Electron. 4, 795-798 (1974). [CrossRef]
  25. L. Nikolova and T. Todorov, "Diffraction efficiency and selectivity of polarization holographic recording," Opt. Acta 31, 579-588 (1984). [CrossRef]
  26. I. Naydenova, L. Nikolova, T. Todorov, N. Holme, P. Ramanujam, and S. Hvilsted, "Diffraction from polarization holographic gratings with surface relief in side-chain azobenzene polyesters," J. Opt. Soc. Am. B 15, 1257-1265 (1998). [CrossRef]
  27. J. Tervo and J. Turunen, "Paraxial-domain diffractive elements with 100% efficieincy based on polarization gratings," Opt. Lett. 25, 785-786 (2000). [CrossRef]
  28. G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, "Liquid-crystal diffraction gratings using polarization holography alignment techniques," J. Appl. Phys. 98 and 123,102 (2005). [CrossRef]
  29. M. J. Escuti and W. M. Jones, "Polarization independent switching with high contrast from a liquid crystal polarization grating," SID Int. Symp. Digest Tech. Papers  37, 1443-1446 (2006). [CrossRef]
  30. C. Oh, R. Komanduri, and M. J. Escuti, "FDTD and elastic continuum analysis of the liquid crystal polarization grating," SID Int. Symp. Digest Tech. Papers  37, 844-847 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited