OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 25 — Dec. 11, 2006
  • pp: 11945–11951

An angle-independent Frequency Selective Surface in the optical range

Daniel Van Labeke, Davy Gérard, Brahim Guizal, Fadi I. Baida, and Lifeng Li  »View Author Affiliations

Optics Express, Vol. 14, Issue 25, pp. 11945-11951 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (246 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We suggest and numerically demonstrate a design for Frequency Selective Surfaces (FSS) operating in the optical (visible and near-infrared) range. The position and width of the FSS bandpass do not depend on the angle of incidence and polarization state of the incoming light, allowing high transmission at any angle. The FSS is formed by annular apertures perforated in a metal film and arranged in a square array. Angle- and polarization-independent transmission properties are demonstrated for silver. These results can be extended to other metals as well as to other frequency domains.

© 2006 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Diffraction and Gratings

Original Manuscript: July 17, 2006
Revised Manuscript: September 8, 2006
Manuscript Accepted: September 22, 2006
Published: December 11, 2006

Daniel Van Labeke, Davy Gérard, Brahim Guizal, Fadi I. Baida, and Lifeng Li, "An angle-independent Frequency Selective Surface in the optical range," Opt. Express 14, 11945-11951 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B.A. Munk, Frequency Selective Surfaces: Theory and Design, John Wiley and sons, New York, 2000 [CrossRef]
  2. S.J. Spector, D.K. Astolfi, S.P. Doran, T.M. Lyszczarz and J.E. Raynolds, "Infrared frequency selective surfaces fabricated using optical lithography and phase-shift masks," J. Vac. Sci. Technol. B 19, 2757-2760 (2001) [CrossRef]
  3. A. Sentenac and A.-L. Fehrembach, "Angular tolerant resonant grating filters under oblique incidence," J. Opt. Soc. Am. A 22, 475-480 (2005) [CrossRef]
  4. T.W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength holes arrays," Nature (London) 391, 667-669 (1998) [CrossRef]
  5. E. Popov, S. Enoch, G. Tayeb, M. Nevi`ere, B. Gralak and N. Bonod, "Enhanced transmission due to nonplasmon resonances in one-and two-dimensional gratings," Appl. Opt. 43, 999-1008 (2004) [CrossRef] [PubMed]
  6. A. Roberts and R. MacPhedran, "Bandpass Grids with Annular Apertures," IEEE Trans. Antennas. Propag.  36, 607-611 (1988). [CrossRef]
  7. T. K. Wu, "Infrared filters for high-efficiency thermovoltaic devices," Microwave Opt. Technol. Lett. 15, 9-12 (1997). [CrossRef]
  8. F.I. Baida and D. Van Labeke, "Light transmission by subwavelength annular aperture arrays in metallic films," Opt. Commun. 209, 17-22 (2002) [CrossRef]
  9. A. Moreau, G. Granet, F. Baida, and D. Van Labeke, "Light transmission by subwavelength square coaxial aperture arrays in metallic films," Opt. Express 11, 1131-1136 (2003). [CrossRef] [PubMed]
  10. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of metallic surface-relief gratings," J. Opt. Soc. Am. A 3, 1780-1787 (1986) [CrossRef]
  11. G. Granet and J.-P. Plumey, "Parametric formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. A: Pure. Appl. Opt 4, 145-149 (2002) [CrossRef]
  12. B. Bai and L. Li, "Group-theoretic approach to enhancing the Fourier modal method for crossed gratings with square symmetry," J. Opt. Soc. Am. A 23, 572-580 (2006) [CrossRef]
  13. The wavelength dependence of the dielectric constant of silver is described by a Drude model: ε= 1- ω^2/p /(ω (ω+i γ)), where ωp = 1.374×10^16 rad.s^-1 and γ= 3.21×10^13 rad.s^-1.
  14. W. Fan, S. Zhang, B. Minhas, K.J. Malloy, and S.R.J. Bruek, "Enhanced Infrared Transmission through Subwavelength Coaxial Metallic Arrays," Phys. Rev. Lett. 94, 033902 (2005) [CrossRef] [PubMed]
  15. J. Salvi, M. Roussey, F. I. Baida, M.-P. Bernal, A. Mussot, T. Sylvestre, H. Maillotte, D. Van Labeke, A. Perentes, I. Utke, C. Sandu, P. Hoffmann and B. Dwir, "Annular aperture arrays: study in the visible region of the electromagnetic spectrum," Opt. Lett. 30, 1611 (2005) [CrossRef] [PubMed]
  16. F.I. Baida, D. Van Labeke, G. Granet, A. Moreau and A. Belkhir, "Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands," Appl. Phys. B 79, 1-8 (2004) [CrossRef]
  17. E. Popov, M. Nevi`ere, S. Enoch and R. Reinisch, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B 62, 16100-16108 (2000) [CrossRef]
  18. Ph. Lalanne, J.C. Rodier and J.P. Hugonin, "Surface plasmons of metallic surfaces perforated by nanohole arrays," J. Opt. A: Pure Appl. Opt. 7422-426 (2005) [CrossRef]
  19. Z. Ruan and M. Qiu, "Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances," Phys. Rev. Lett. 96, 233901 (2006) [CrossRef] [PubMed]
  20. Q. Cao and Ph. Lalanne, "Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits," Phys. Rev. Lett. 88, 057403 (2002) [CrossRef] [PubMed]
  21. F. Marquier, J. Greffet, S. Collin, F. Pardo, and J. Pelouard, "Resonant transmission through a metallic film due to coupled modes," Opt. Express 13, 70-76 (2005). [CrossRef] [PubMed]
  22. J.T. Shen, P.B. Catrysse and S. Fan, "Mechanism for Designing Metallic Metamaterials with a High Index of Refraction," Phys. Rev. Lett. 94, 197401 (2005) [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited