OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 25 — Dec. 11, 2006
  • pp: 11964–11971

Mie plasmon enhanced diffraction of light from nanoporous metal surfaces

Tatiana V. Teperik, Vyacheslav V. Popov, F. Javier García de Abajo, Tim A. Kelf, Yoshihiro Sugawara, Jeremy J. Baumberg, Mamdouh Abdelsalem, and Philip N. Bartlett  »View Author Affiliations

Optics Express, Vol. 14, Issue 25, pp. 11964-11971 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (562 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The diffractive properties of gold films with a periodic lattice of sub-micron voids beneath the surface are investigated. It has been shown that nanoporous metal surfaces exhibit frequency-selective non-dispersive diffraction enhanced by Mie plasmons in nanovoids, which leads to absolute angular tolerance of the diffracted beam intensity that can be useful for a variety of applications covering angle-tolerant optical filters, deflectors, absorbers, and beam splitters. Diffraction spectra are measured and calculated to support these conclusions, showing good qualitative agreement.

© 2006 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(160.3900) Materials : Metals
(240.6680) Optics at surfaces : Surface plasmons
(290.4020) Scattering : Mie theory
(290.4210) Scattering : Multiple scattering

ToC Category:
Diffraction and Gratings

Original Manuscript: October 2, 2006
Revised Manuscript: November 20, 2006
Manuscript Accepted: November 20, 2006
Published: December 11, 2006

Virtual Issues
Vol. 2, Iss. 1 Virtual Journal for Biomedical Optics

Tatiana V. Teperik, Vyacheslav V. Popov, F. Javier García de Abajo, Tim A. Kelf, Yoshihiro Sugawara, Jeremy J. Baumberg, Mamdouh Abdelsalem, and Philip N. Bartlett, "Mie plasmon enhanced diffraction of light from nanoporous metal surfaces," Opt. Express 14, 11964-11971 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Wood, "Anomalous diffraction gratings," Phys. Rev. 48, 928-936 (1935). [CrossRef]
  2. S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D.M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801(1)-176801(4) (2001). [CrossRef]
  3. O. D. Velev, P. M. Tessier, A. M. Lenhoff, and E. W. Kaler, "A class of porous metallic nanostructures," Nature 401, 548 (1999). [CrossRef]
  4. J. E. G. J. Wijnhoven, S. J. M. Zevenhuizen, M. A. Hendriks, D. Vanmaekelbergh, J. J. Kelly, and W. L. Vos, "Electrochemical assembly of ordered macropores in gold," Adv. Mater. 12, 888-890 (2000). [CrossRef]
  5. W. Dong, H. Dong, Z. Wang, P. Zhan, Z. Yu, X. Zhao, Y. Zhu, and N. Ming, "Ordered array of gold nanoshells interconnected with gold nanotubes fabricated by double templating," Adv. Mater. 18, 755-759 (2006). [CrossRef]
  6. N. Stefanou, A. Modinos, and V. Yannopapas, "Optical transparency of mesoporous metals," Solid State Commun. 118, 69-73 (2001). [CrossRef]
  7. T. V. Teperik, V. V. Popov, and F. J. García de Abajo, "Void plasmons and total absorption of light in nanoporous metallic films," Phys. Rev. B 71, 085408(1)-085408(9) (2005).
  8. T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, "Plasmonic Band Gaps and Trapped Plasmons on Nanostructured Metal Surfaces," Phys. Rev. Lett. 95, 116802(1)-116802(4) (2005).
  9. T. V. Teperik, V. V. Popov, F. J. Garc’ýa de Abajo, M. Abdelsalam, P. N. Bartlett, T. Kelf, Y. Sugawara, and J. J. Baumberg, "Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons," Opt. Express 14, 1965-1972 (2006). [CrossRef] [PubMed]
  10. A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Coupling of near-grazing microwave photons to surface plasmon polaritons via a dielectric grating," Phys. Rev. E 61, 5900-5906 (2000). [CrossRef]
  11. F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, "Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters," J. Opt. A: Pure Appl. Opt. 1, 545-551 (1999). [CrossRef]
  12. D. Felbacq, M. C. Larciprete, C. Sibilia, M. Bertolotti, and M. Scalora, "Multiple wavelengths filtering of light through inner resonances," Phys. Rev. E 72, 066610(1)-066610(6) (2005). [CrossRef]
  13. L. Zhao, K. L. Kelly, and G. C. Schatz, "The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width," J. Phys. Chem. B 107, 7343-7350 (2003). [CrossRef]
  14. M. E. Abdelsalem, P. N. Bartlett, J. J. Baumberg, and S. Coyle, "Preparation of arrays of isolated spherical cavities by polystyrene spheres on self-assembled pre-patterned macroporous films," Adv. Mater. 16, 90-93 (2004). [CrossRef]
  15. M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, S. Cintra, T. A. Kelf, and A. E. Russell, "Electrochemical SERS at a structured gold surface," Electrochemistry Communications 7, 740-744 (2005). [CrossRef]
  16. N. Stefanou, V. Yannopapas, and A. Modinos, "Heterostructures of photonic crystals: frequency bands and transmission coefficients," Comput. Phys. Commun. 113, 49-77 (1998). [CrossRef]
  17. N. Stefanou, V. Yannopapas, and A. Modinos, "MULTEM2: A new version of a program for transmission and band-structure calculations of photonic crystals," Comput. Phys. Commun. 132, 189-196 (2000). [CrossRef]
  18. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  19. The experimental and theoretical Mie energies do not exactly coincide, and the assumption for a non-unity effective dielectric constant inside the nanopores ensures their agreement. Currently we are investigating the origin of this effect.
  20. T. V. Teperik, V. V. Popov, and F. J. García de Abajo, "Radiative decay of plasmons in a metallic nanoshell," Phys. Rev. B 69, 155402(1)-155402(7) (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited