OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 25 — Dec. 11, 2006
  • pp: 11972–11981

Spectral evolution with incremental nanocoating of long period fiber gratings

Ignacio Del Villar, Jesus M. Corres, Miguel Achaerandio, Francisco J. Arregui, and Ignacio R. Matias  »View Author Affiliations

Optics Express, Vol. 14, Issue 25, pp. 11972-11981 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (589 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The incremental deposition of a thin overlay on the cladding of a long-period fiber grating (LPFG) induces important resonance wavelength shifts in the transmission spectrum. The phenomenon is proved theoretically with a vectorial method based on hybrid modes and coupled mode theory, and experimentally with electrostatic self-assembly monolayer process. The phenomenon is repeated periodically for specific overlay thickness values with the particularity that the shape of the resonance wavelength shift depends on the thickness of the overlay. The main applications are the design of wide optical filters and multiparameter sensing devices.

© 2006 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(260.2110) Physical optics : Electromagnetic optics
(310.1860) Thin films : Deposition and fabrication

ToC Category:
Diffraction and Gratings

Original Manuscript: September 11, 2006
Revised Manuscript: October 31, 2006
Manuscript Accepted: October 31, 2006
Published: December 11, 2006

Ignacio Del Villar, Jesus M. Corres, Miguel Achaerandio, Francisco J. Arregui, and Ignacio R. Matias, "Spectral evolution with incremental nanocoating of long period fiber gratings," Opt. Express 14, 11972-11981 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Bhatia, "Applications of long-period gratings to single and multi-parameter sensing," Opt. Express 4, 457-466 (1999). [CrossRef] [PubMed]
  2. S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci Technol. 14, R49-R61 (2003). [CrossRef]
  3. J. R. Qiang and H. E. Chen, "Gain flattening fibre filters using phase shifted long period fibre grating," Electron. Lett. 34, 1132-1133 (1998). [CrossRef]
  4. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as Band Rejection Filters," J. Lightwave Technol. 14, 58-65 (1996). [CrossRef]
  5. B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark and A. M. Vengsarkar, "All-optical switching in long period fiber gratings," Opt. Lett. 22, 883-885 (1997). [CrossRef] [PubMed]
  6. N. D. Rees, S. W. James, R. P. Tatam and G. J. Ashwell, "Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays," Opt. Lett. 27, 686-688 (2002). [CrossRef]
  7. I. Del Villar, M. Achaerandio, I. R. Matias and F. J. Arregui, "Deposition of an Overlay with Electrostactic Self-Assembly Method in Long Period Fiber Gratings," Opt. Lett. 30, 720-722 (2005). [CrossRef] [PubMed]
  8. I. Del Villar, I. R. Matias, F. J. Arregui and M. Achaerandio, "Nanodeposition of materials with complex refractive index in long-period fiber gratings," J. Lightwave Technol. 23, 4192-4199 (2005). [CrossRef]
  9. Z. Y. Wang, J. R. Heflin, R. H. Stolen, S. Ramachandran, "Analysis of optical response of long period fiber gratings to nm-thick thin-film coatings," Opt. Express 13, 2808-2813 (2005). [CrossRef] [PubMed]
  10. D. W. Kim, Y. Zhang, K. L. Cooper and A. Wang, "Fibre-optic interferometric immuno-sensor using long period grating," Electron. Lett. 21, 324-325 (2006). [CrossRef]
  11. Q. Chen, J. Lee, M. R. Lin, Y. Wang, S. S. Yin, Q. M. Zhang and K. A. Reichard "Investigation of tuning characteristics of electrically tunable long-period gratings with a precise four-layer model," J. Lightwave Technol. 24, 2954-2962 (2006). [CrossRef]
  12. A. Cusano, A. Iadicicco, P. Pilla, L. Contesta, S. Campopiano, A. Cutolo, and M. Giordano, "Mode transition in high refractive index coated long period gratings," Opt. Express 14, 19-34 (2006). [CrossRef] [PubMed]
  13. P. Pilla, A. Iadicicco, L. Contesta, S. Campopiano, A. Cutolo, M. Giordano, G. Guerra and A. Cusano, "Optical chemo-sensor based on long-period gratings coated with δ form syndiotactic polystyrene," IEEE Photon. Technol. Lett. 17, 1713-1715, (2005). [CrossRef]
  14. I. Del Villar, I. R. Matias, F. J. Arregui and P. Lalanne, "Optimization of sensitivity in long period gratings with overlay deposition," Opt. Express 13, 56-69 (2005). [CrossRef] [PubMed]
  15. I. Del Villar, I. R. Matias and F. J. Arregui, "Influence on cladding mode distribution of overlay deposition on long-period fiber gratings," J. Opt. Soc. Am. A,  23, 651-658 (2006). [CrossRef]
  16. E. Anemogiannis, E. N. Glytsis and T. K. Gaylord, "Transmission characteristics of long- period fiber gratings having arbitrary azimutal/radial refractive index variation," J. Lightwave Technol.,  21, 218-227, (2003). [CrossRef]
  17. T. Erdogan, "Cladding-mode resonances in short- and long- period fiber grating filters," J. Opt. Soc. Am. A,  14, 1760-1773 (1997). [CrossRef]
  18. S. Guo, S. Albin and S. Rogowski, "Comparative analysis of Bragg fibers," Opt. Express 12, 198-207 (2004). [CrossRef] [PubMed]
  19. I. Del Villar, I. R. Matias and F. J. Arregui, "Enhancement of sensitivity in long-period gratings with deposition of low-refractive-index materials," Opt. Lett.,  30, 2363-2365 (2005). [CrossRef] [PubMed]
  20. G. Decher, "Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites," Science,  277, 1232-1237 (1997). [CrossRef]
  21. J. Choi, M. F. Rubner, "Influence of the degree of Ionization on Weak Polyelectrolyte Multilayer Assembly," Macromolecules,  38, 116-124 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (2279 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited