OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 25 — Dec. 11, 2006
  • pp: 11987–11996

Delay-tunable gap-soliton-based slow-light system

Joe T. Mok, C. Martijn de Sterke, and Benjamin J. Eggleton  »View Author Affiliations

Optics Express, Vol. 14, Issue 25, pp. 11987-11996 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (443 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We numerically and analytically evaluate the delay of solitons propagating slowly, and without broadening, in an apodized Bragg grating. Simulations indicate that a 100 mm Bragg grating with Δn=10-3 can delay sub-nanosecond pulses by nearly 20 pulse widths without any change in the output pulse width. Delay tunability is achieved by simultaneously adjusting the launch power and detuning. A simple analytic model is developed to describe the monotonic dependence of delay on Δn and compared with simulations. As the intensity may be greatly enhanced due to a reduced velocity, a procedure for improving the delay while avoiding material damage is outlined.

© 2006 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 26, 2006
Revised Manuscript: November 27, 2006
Manuscript Accepted: November 29, 2006
Published: December 11, 2006

Joe T. Mok, C. Martijn de Sterke, and Benjamin J. Eggleton, "Delay-tunable gap-soliton-based slow-light system," Opt. Express 14, 11987-11996 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chenb, "80-micron Interaction Length Silicon Photonic Crystal Waveguide Modulator," Appl. Phys. Lett. 87, 221,105 (2005). [CrossRef]
  2. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, "Strained Silicon as a New Electro-Optic Material," Nature 441, 199-202 (2006). [CrossRef] [PubMed]
  3. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, "Application of Slow Light in Telecommunications," Opt. Photon. News 17, 18-23 (2006). [CrossRef]
  4. R. Boyd and D. Gauthier, "Slow and Fast Light," in Prog. in Optics, E.Wolf, ed., vol. 43, pp. 497-530 (Elsevier, Amsterdam, 2002).
  5. J. B. Khurgin, "Optical Buffers Based on Slow Light in Electromagnetically Induced Transparent Media and Coupled Resonator Structures: Comparative Analysis," J. Opt. Soc. Am. B 22, 1062-1074 (2005). [CrossRef]
  6. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, "Optical Delay Lines Based on Optical Filters," J. Quantum Electron. 37, 525-530 (2001). [CrossRef]
  7. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, "Bragg Grating Solitons," Phys. Rev. Lett. 76, 1627-1630 (1996). [CrossRef] [PubMed]
  8. D. Taverner, N. G. R. Broderick, D. J. Richardson, R. I. Laming, and M. Ibsen, "Nonlinear Self-Switching and Multiple Gap-Soliton Formation in a Fiber Bragg Grating," Opt. Lett. 23, 328-330 (1998). [CrossRef]
  9. B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, "Bragg Solitons in the Nonlinear Schrodinger Limit: Experiment and Theory," J. Opt. Soc. Am. B 16, 587-599 (1999). [CrossRef]
  10. N. G. R. Broderick, D. J. Richardson, and M. Ibsen, "Nonlinear Switching in a 20-Cm-Long Fiber Bragg Grating," Opt. Lett. 25, 536-538 (2000). [CrossRef]
  11. D. N. Christodoulides and R. I. Joseph, "Slow Bragg Solitons in Nonlinear Periodic Structures," Phys. Rev. Lett. 62, 1746-1749 (1989). [CrossRef] [PubMed]
  12. A. Aceves and S. Wabnitz, "Self-Induced Transparency Solitons in Nonlinear Refractive Periodic Media," Phys. Lett. A 141, 37-42 (1989). [CrossRef]
  13. C. M. de Sterke and J. E. Sipe, "Gap Solitons," in Prog. in Optics, E. Wolf, ed., vol. 33, pp. 203-259 (Elsevier, Amsterdam, 1994).
  14. M. De Sario, C. Conti, and G. Assanto, "Optically Controlled Delay Lines by Pulse Self-Trapping in Parametric Waveguides with Distributed Feedback," IEEE J. Quant. Elect. 36, 931-943 (2000). [CrossRef]
  15. M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, "Slow-Light, Band-Edge Waveguides for Tunable Time Delays," Opt. Express 13, 7145-7159 (2005). [CrossRef] [PubMed]
  16. V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, "Integrated All-Optical Pulse Regenerator in Chalcogenide Waveguides," Opt. Lett. 30, 2900-2902 (2005). [CrossRef] [PubMed]
  17. <jrn>. M. Shokooh-Saremi, V. G. Taeed, N. J. Baker, I. C.M. Littler, D. J. Moss, B. J. Eggleton, Y. Ruan, and B. Luther- Davies, "High-Performance Bragg Gratings in Chalcogenide Rib Waveguides Written with a Modified Sagnac Interferometer," J. Opt. Soc. Am. B 23, 1323-1331 (2006).</jrn> [CrossRef]
  18. C. M. de Sterke, K. R. Jackson, and B. D. Robert, "Nonlinear Coupled Mode Equations on a Finite Interval: A Numerical Procedure," J. Opt. Soc. Am. B 8, 403-412 (1991). [CrossRef]
  19. J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, "Dispersionless Slow Light Using Gap Solitons," Nature Phys. 2, 775-780 (2006). [CrossRef]
  20. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shawand, and I. D. Aggarwal, "Large Raman Gain and Nonlinear Phase Shifts in High-Purity As2Se3 Chalcogenide Fibers," J. Opt. Soc. Am. B 21, 1146-1155 (2004). [CrossRef]
  21. P. S. J. Russell, "Bloch Wave Analysis of Dispersion and Pulse Propagation in Pure Distributed Feedback Structures," J. Mod. Opt. 38, 1599-1619 (1991). [CrossRef]
  22. R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, "Slow-Light Optical Buffers: Capabilities and Fundamental Limitations," J. Lightwave Technol. 23, 4046-4066 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited