OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 25 — Dec. 11, 2006
  • pp: 12295–12301

The temporal coherence improvement of the two-dimensional negative-index slab image

Peijun Yao, Wei Li, Songlin Feng, and Xunya Jiang  »View Author Affiliations

Optics Express, Vol. 14, Issue 25, pp. 12295-12301 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (385 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this letter,we investigate the image field of the quasimonochromatic random source in the two-dimensional negative-index slab. The prominent temporal-coherence gain of the image is observed in the numerical simulations even when the frequency-filtering effects are very weak. We find that the signals originating from the source will take the different time—“group” retarded time to reach the image location along the different optical paths. Based on the new physical picture, a simple phenomenological theory is constructed to obtain the image field and demonstrate that the temporal-coherence gain is from different “group” retarded time. The phenomenological theory agrees well with the FDTD simulation and the strict Green’s function method. These results should have important impacts on the study of coherence mechanism and the design of novel devices.

© 2006 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(160.0160) Materials : Materials
(260.0260) Physical optics : Physical optics

ToC Category:

Original Manuscript: September 11, 2006
Revised Manuscript: November 9, 2006
Manuscript Accepted: November 9, 2006
Published: December 11, 2006

Peijun Yao, Wei Li, Songlin Feng, and Xunya Jiang, "The temporal coherence improvement of the two-dimensional negative-index slab image," Opt. Express 14, 12295-12301 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago,"The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp. 10, 509 (1968). [CrossRef]
  2. J. B. Pendry, "Negative refraction makes a perfect lens,"Phys. Rev. Lett. 85, 3966 (2000). [CrossRef] [PubMed]
  3. J. B. Pendry,"Comment on :Left-handed materials do not make a perfect lens,"Phys. Rev. Lett. 91, 099701 (2003). [CrossRef] [PubMed]
  4. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab,"Appl. Phys. Lett. 82, 1506 (2003). [CrossRef]
  5. G. Gomez-Santos,"Photonic band gap from a stack of positive and negative index materials, " Phys. Rev. Lett. 90, 077401 (2003). [PubMed]
  6. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction,"Science 292, 77 (2001). [CrossRef] [PubMed]
  7. A. Pimenov, P. Przyslupski, A. Loidl, and B. Dabrowski, "Negative refraction in ferromagnet -superconductor superlattices,"Phys. Rev. Lett. 95, 247009 (2005); [CrossRef] [PubMed]
  8. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005). [CrossRef] [PubMed]
  9. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, " Subwavelength resolution in a twodimensional photonic-crystal-based superlens," Phys. Rev. Lett. 91, 207401 (2003); [CrossRef] [PubMed]
  10. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis,"Negative refraction by photonic crystals," Nature (London) 423, 604 (2003). [CrossRef] [PubMed]
  11. S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, "Refraction at media with negative refractive index," Phys. Rev. Lett. 90, 107402 (2003); [CrossRef] [PubMed]
  12. J. B. Pendry and D. R. Smith, "Comment on :Wave refraction in negative-index media: always positive and very inhomogeneous," Phys.Rev. Lett. 90, 029703 (2003). [CrossRef] [PubMed]
  13. X. S. Rao and C. K. Ong, "Amplification of evanescent waves in a lossy left-handed material slab," Phys. Rev. B 68, 113103 (2003); [CrossRef]
  14. MichaelW. Feise, Yuri S. Kivshar, "Sub-wavelength imaging with a left-handed material flat lens," Phys. Lett. A 334326 (2005) [CrossRef]
  15. Lei Zhou, C. T. Chan, "Vortex-like surface wave and its role in the transient phenomena of meta-material focusing, " Appl. Phys. Lett. 86, 101104 (2005). [CrossRef]
  16. L. Chen, S. He and L. Shen, "Finite-size effects of a left-handed material slab on the image quality," Phys. Rev. Lett. 92, 107404 (2004). [CrossRef] [PubMed]
  17. R. W. Ziolkowski and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E 64, 056625 (2001). [CrossRef]
  18. S. A. Cummer, "Simulated causal subwavelength focusing by a negative refractive index slab,"Appl. Phys. Lett. 82, 1503 (2003). [CrossRef]
  19. P. F. Loschialpo, D. L. Smith, D. W. Forester, F. J. Rachford, and J. Schelleng, "Electromagnetic waves focused by a negative-index planar lens," Phys. Rev. E 67, 025602(R) (2003). [CrossRef]
  20. R. Merlin, "Analytical solution of the almost-perfect-lens problem," Appl. Phys. Lett. 84, 1290 (2004). [CrossRef]
  21. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys.Rev. B 68, 045115 (2003). [CrossRef]
  22. Nader Engheta, "An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability," IEEE Antennas and Wireless Propagation Lett. 1, 10,2002. [CrossRef]
  23. IlyaV. Shadrivov, Andrey A. Sukhorukov, and Yuri S. Kivshar, "Guided modes in negative-refractive-index waveguides, " Phys. Rev. E 67, 057602 (2003). [CrossRef]
  24. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, New York, 1991). [CrossRef]
  25. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, Cambridge, 1995).
  26. MarlanO.  Scully and M. Suhail Zubairy, Quantum Optics, (Cambridge University, Cambridge, 1997).
  27. X. Jiang and C. M. Soukoulis, "Time dependent theory for random lasers," Phys. Rev. Lett. 85, 70(2000). [CrossRef] [PubMed]
  28. In our source frequency range, the index range is about.1.i0.0029±(0.006+i10.5), so the difference of the focal length and the reflection are very small.
  29. The "group velocity" is not a well-defined value if the working frequency ω0 is near the resonant frequency ωa of the NIM. But the GRT is still well-defined.
  30. Xunya Jiang, Wenda Han, and Peijun Yao, unpublished.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited