OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 25 — Dec. 11, 2006
  • pp: 12334–12340

Humidity effect on the decay of second-order nonlinearity in thermally poled fused silica

Huai-Yi Chen, Feng-Fan Chang, Jia-Cheng Liao, and Shiuh Chao  »View Author Affiliations

Optics Express, Vol. 14, Issue 25, pp. 12334-12340 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (137 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Type I (GE124) and Type II (KV) fused silica were thermally poled in a vacuum and in air under identical poling conditions. Secondorder nonlinear (SON) strength and nonlinear depth were found all to be the same. Samples were then stored in high and low humidity to study their SON stability.. The SON of poled GE124 was stable over time despite different poling atmospheres and humidity in storage. The SON of both the air-poled and vacuum-poled KV samples decayed over time in both low and high humidity, with the exception that the air-poled KV sample stored in low humidity remained stable. High humidity accelerated the decay process of the KV samples. A porous surface model was used to interpret the decay mechanism. The decay curves implied multiple carriers or a multipleporosity model for the decay mechanism.

© 2006 Optical Society of America

OCIS Codes
(190.4400) Nonlinear optics : Nonlinear optics, materials

ToC Category:
Nonlinear Optics

Original Manuscript: September 11, 2006
Revised Manuscript: November 9, 2006
Manuscript Accepted: November 9, 2006
Published: December 11, 2006

Huai-Yi Chen, Feng-Fan Chang, Jia-Cheng Liao, and Shiuh Chao, "Humidity effect on the decay of second-order nonlinearity in thermally poled fused silica," Opt. Express 14, 12334-12340 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, "Large second-order nonlinearity in poled fused silica," Opt. Lett. 16, 1732-1734 (1991). [CrossRef] [PubMed]
  2. V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, "Thermal poling of silica in air and under vacuum: the influence of charge transport on second harmonic generation," Appl. Phys. Lett. 74, 2423-2425 (1999). [CrossRef]
  3. M. Qiu, F. Pi, G. Orriols, and M. Bibiche, "Signal damping of second-harmonic generation in poled soda-lime silicate glass," J. Opt. Soc. Am. B 15, 1362-1365 (1998). [CrossRef]
  4. M. Qiu, T. Mizunami, R. Vilaseca, F. Pi, and G. Orriols, "Bulk and near-surface second-order nonlinearities generated in a BK7 soft glass by thermal poling," J. Opt. Soc. Am. B 19, 37-42 (2002). [CrossRef]
  5. Y. Yonesaki, K. Tanaka, A. Narazaki, J. Si, and K. Hirao, "Relaxation phenomena in second-order nonlinearity of thermally and optically poled Nb2O5-TeO2 glasses," J. Phys. D 35, 2026-2031 (2002). [CrossRef]
  6. A. Narazaki, K. Tanaka, and K. Hirao, "Surface structure and second-order nonlinear optical properties of thermally poled WO3-TeO2 glasses doped with Na," J. Opt. Soc. Am. B 19, 54-62 (2002). [CrossRef]
  7. F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, "Inducing a large second-order optical nonlinearity in soft glasses by poling," Appl. Phys. Lett. 72, 3252-3254 (1998). [CrossRef]
  8. M. Janos, W. Xu, D. Wong, H. Inglis, and S. Fleming, "Growth and decay of the electrooptic effect in thermally poled B/Ge codoped fiber," J. Lightwave Technol. 17, 1037-1041 (1999). [CrossRef]
  9. O. Deparis, C. Corbari, P. G. Kazansky, and K. Sakaguchi, "Enhanced stability of the second-order optical nonlinearity in poled glasses," Appl. Phys. Lett. 84, 4857-4859 (2004). [CrossRef]
  10. P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, "Effects of dispersion and focusing on the production of optical harmonics," Phys. Rev. Lett. 8, 21-22 (1962). [CrossRef]
  11. H. Takebe, P. G. Kazansky, P. St. J. Russell, and K. Morinaga, "Effect of poling conditions on second-harmonic generation in fused silica," Opt. Lett. 21, 468-470 (1996). [CrossRef] [PubMed]
  12. R. Kohlrausch, "Ueber das Dellmann'sche elektrometer," Ann. Phys. Chem. 72, 353-405 (1847). [CrossRef]
  13. G. Williams and D. C. Watts, "Non-symmetrical dielectric relaxation behavior arising from a simple empirical decay function," Trans. Faraday Soc. 66, 80-85 (1970). [CrossRef]
  14. C. Hashimoto, P. Panizza, J. Rouch, and H. Ushiki, "Graphical analysis for gel morphology II. New mathematical approach for stretched exponential function with β > 1," J. Phys.: Condens. Matter 17,6319-6328 (2005). [CrossRef]
  15. R. H. Stolen and H. K. Tom, "Self-organized phase-matched harmonic generation in optical fibers," Opt. Lett. 12, 585-587 (1987). [CrossRef] [PubMed]
  16. P.G. Kazansky and P. St. J. Russell, "Thermally poled glass: frozen-in electric field or oriented dipoles?" Opt. Commun. 110, 611-614 (1994). [CrossRef]
  17. H. Y. Chen, J. S. Sue, Y. H. Lin, C. S. Tsai, P. T. Wu, and S. Chao, "Thermal poling and ultraviolet erasure characteristics of type-III ultraviolet-grade fused silica and application to periodic poling on planar substrates," J. Appl. Phys. 94, 1531-1538 (2003). [CrossRef]
  18. A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, "Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution," Appl. Phys. Lett. 83, 3623-3625 (2003). [CrossRef]
  19. A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Detailed analysis of inverse Fourier transform techniques to uniquely infer second-order nonlinearity profile of thin films," J. Appl. Phys. 94, 013502 (2005). [CrossRef]
  20. H. Y. Chen, C. L. Lin, Y. H. Yang, S. Chao, H. Niu, and C. T. Shih, "Creation of second-order nonlinearity and quasi-phase-matched second harmonic generation in Ge-implanted fused silica planar waveguide," Appl. Phys. Lett. 86, 081107 (2005). [CrossRef]
  21. H. Y. Chen, J. S. Sue, Y. H. Lin, and S. Chao, "Quasi-phase-matched second-harmonic generation in ultraviolet-assisted periodically poled planar fused silica," Opt. Lett. 28, 917-919 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited